Citation: | Zheng Bin,Shi Lijian,Zou bin, et al. Research on Sentinel-1/SAR sea ice detection method in Liaodong Bay based on AUNet++[J]. Haiyang Xuebao,2024, 46(10):108–119 doi: 10.12284/hyxb2024097 |
[1] |
Sun Xiaoyu, Zhang Xi, Huang Weimin, et al. Sea ice classification using mutually guided contexts[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 4204019.
|
[2] |
臧金霞, 刘建强, 殷晓斌, 等. 基于最优特征集的HY-1C卫星海岸带成像仪影像海冰分类方法研究[J]. 海洋学报, 2022, 44(5): 35−46.
Zang Jinxia, Liu Jianqiang, Yin Xiaobin, et al. Study on sea ice classification of HY-1C satellite coastal zone imager images based on the optimal feature set[J]. Haiyang Xuebao, 2022, 44(5): 35−46.
|
[3] |
孙劭, 苏洁, 史培军. 2010年渤海海冰灾害特征分析[J]. 自然灾害学报, 2011, 20(6): 87−93.
Sun Shao, Su Jie, Shi Peijun. Features of sea ice disaster in the Bohai Sea in 2010[J]. Journal of Natural Disasters, 2011, 20(6): 87−93.
|
[4] |
Liu Huiying, Guo Huadong, Zhang Lu. SVM-based sea ice classification using textural features and concentration from RADARSAT-2 dual-pol ScanSAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(4): 1601−1613. doi: 10.1109/JSTARS.2014.2365215
|
[5] |
郑敏薇, 李晓明, 任永政. 高分3号星载合成孔径雷达极地海冰自动检测方法研究[J]. 海洋学报, 2018, 40(9): 113−124. doi: 10.3969/j.issn.0253-4193.2018.09.010
Zheng Minwei, Li Xiaoming, Ren Yongzheng. The method study on automatic sea ice detection with Gao Fen-3 synthetic aperture radar data in polar regions[J]. Haiyang Xuebao, 2018, 40(9): 113−124. doi: 10.3969/j.issn.0253-4193.2018.09.010
|
[6] |
Tan Weikai, Li J, Xu Linlin, et al. Semiautomated segmentation of Sentinel-1 SAR imagery for mapping sea ice in Labrador coast[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(5): 1419−1432. doi: 10.1109/JSTARS.2018.2806640
|
[7] |
Park J W, Korosov A A, Babiker M, et al. Classification of sea ice types in Sentinel-1 synthetic aperture radar images[J]. The Cryosphere, 2020, 14(8): 2629−2645. doi: 10.5194/tc-14-2629-2020
|
[8] |
冯琦, 李广雪. 基于Sentinel-1的辽东湾海冰冰情监测[J]. 海岸工程, 2024, 43(1): 66−78. doi: 10.12362/j.issn.1002-3682.20230716001
Feng Qi, Li Guangxue. Monitoring of sea ice situation in the Liaodong Bay based on Sentinel-1 data[J]. Coastal Engineering, 2024, 43(1): 66−78. doi: 10.12362/j.issn.1002-3682.20230716001
|
[9] |
Lu Yiru, Zhang Biao, Perrie W. Arctic sea ice and open water classification from spaceborne fully polarimetric synthetic aperture radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 4203713.
|
[10] |
Li Jinxin, Wang Chao, Wang Shigang, et al. Gaofen-3 sea ice detection based on deep learning[C]//Proceedings of 2017 Progress in Electromagnetics Research Symposium-Fall. Singapore: IEEE, 2017: 933-939.
|
[11] |
Zhang Tianyu, Yang Ying, Shokr M, et al. Deep learning based sea ice classification with Gaofen-3 fully polarimetric SAR data[J]. Remote Sensing, 2021, 13(8): 1452. doi: 10.3390/rs13081452
|
[12] |
徐欢, 任沂斌. 基于混合损失U-Net的SAR图像渤海海冰检测研究[J]. 海洋学报, 2021, 43(6): 157−170.
Xu Huan, Ren Yibin. Detecting sea ice of Bohai Sea using SAR images based on a hybrid loss U-Net model[J]. Haiyang Xuebao, 2021, 43(6): 157−170.
|
[13] |
Wang Yiran, Li Xiaoming. Arctic sea ice cover data from spaceborne synthetic aperture radar by deep learning[J]. Earth System Science Data, 2021, 13(6): 2723−2742. doi: 10.5194/essd-13-2723-2021
|
[14] |
Ren Yibin, Li Xiaofeng, Yang Xiaofeng, et al. Development of a dual-attention U-Net model for sea ice and open water classification on SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4010205.
|
[15] |
Liang Zeyu, Pang Xiaoping, Ji Qing, et al. An entropy-weighted network for polar sea ice open lead detection from Sentinel-1 SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4304714.
|
[16] |
Wan Hongyang, Luo Xiaowen, Wu Ziyin, et al. Multi-featured sea ice classification with SAR image based on convolutional neural network[J]. Remote Sensing, 2023, 15(16): 4014. doi: 10.3390/rs15164014
|
[17] |
庞海洋, 孔祥生, 孙志伟, 等. 基于遥感和气象数据对辽东湾海冰变化预测研究[J]. 海洋与湖沼, 2018, 49(4): 725−733.
Pang Haiyang, Kong Xiangsheng, Sun Zhiwei, et al. The forecast model of sea ice changes in Liaodong Bay using remote sensing and meteorological data[J]. Oceanologia et Limnologia Sinica, 2018, 49(4): 725−733.
|
[18] |
刘眉洁. 基于高分辨率极化SAR的海冰分类和厚度探测方法研究[D]. 青岛: 中国石油大学(华东), 2016.
Liu Meijie. Research on the sea ice classification and thickness detection with high-resolution and polarimetric SAR data[D]. Qingdao: China University of Petroleum (East China), 2016.
|
[19] |
自然资源部海洋预警监测司. 2019中国海洋灾害公报[R]. 北京: 自然资源部, 2020.
Marine Early Warning and Monitoring Department of the Ministry of Natural Resources. 2019 Bulletin of China marine disaster[R]. Beijing: Ministry of Natural Resources, 2020.
|
[20] |
孙湘平. 中国近海区域海洋[M]. 北京: 海洋出版社, 2006.
Sun Xiangping. China’s Offshore Regional Oceans[M]. Beijing: China Ocean Press, 2006. (查阅网上资料, 未找到对应的英文翻译, 请确认)
|
[21] |
Murashkin D, Spreen G, Huntemann M, et al. Method for detection of leads from Sentinel-1 SAR images[J]. Annals of Glaciology, 2018, 59(76pt2): 124−136. doi: 10.1017/aog.2018.6
|
[22] |
Lopes A, Touzi R, Nezry E. Adaptive speckle filters and scene heterogeneity[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(6): 992−1000. doi: 10.1109/36.62623
|
[23] |
Zhou Zongwei, Rahman Siddiquee M, Tajbakhsh N, et al. UNet++: a nested U-net architecture for medical image segmentation[C]//Proceedings of the 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018. Granada, Spain: Springer, 2018: 3−11.
|
[24] |
Woo S, Park J, Lee J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision. Munich: Springer, 2018: 3−19.
|
[25] |
Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference. Munich: Springer, 2015: 234−241.
|
[26] |
Huang Gao, Liu Zhuang, Van Der Maaten L, et al. Densely connected convolutional networks[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 4700−4708.
|
[27] |
Milletari F, Navab N, Ahmadi S A. V-Net: fully convolutional neural networks for volumetric medical image segmentation[C]//Proceedings of 2016 Fourth International Conference on 3D Vision (3DV). Stanford: IEEE, 2016: 565−571.
|
[28] |
Robbins H, Monro S. A stochastic approximation method[J]. The Annals of Mathematical Statistics, 1951, 22(3): 400−407. doi: 10.1214/aoms/1177729586
|
[29] |
Badrinarayanan V, Kendall A, Cipolla R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481−2495. doi: 10.1109/TPAMI.2016.2644615
|
[30] |
Zhao Hengshuang, Shi Jianping, Qi Xiaojuan, et al. Pyramid scene parsing network[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2881−2890.
|
[31] |
Chen L C, Zhu Yukun, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the 15th European Conference on Computer Vision. Munich: Springer, 2018: 801−818.
|