Citation: | Gu Liang,Hu Simin,Ma Lin, et al. Effects of different diet culture the developmental process of the Robertgurneya sp.[J]. Haiyang Xuebao,2024, 46(9):64–72 doi: 10.12284/hyxb2024092 |
[1] |
连光山, 孙柔鑫, 王彦国, 等. 中国海及其邻近海域猛水蚤桡足类多样性[M]. 北京: 科学出版社, 2022.
Lian Guangshan, Sun Rouxin, Wang Yanguo, et al. Species Diversity of Marine Harpacticoid Copepods in China’s Seas and Adjacent Waters[M]. Beijing: Science Press, 2022.
|
[2] |
马林. 中国海底栖桡足类的分类学研究[D]. 青岛: 中国科学院研究生院(海洋研究所), 2011.
Ma Lin. Study on the taxonomy of benthic copepods in the China seas[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2011.
|
[3] |
Willen E. A new species of Stenhelia (Copepoda, Harpacticoida) from a hydrothermal, active, submarine volcano in the New Ireland fore-arc system (Papua New Guinea) with notes on deep sea colonization within the Stenheliinae[J]. Journal of Natural History, 2003, 37(14): 1691−1711. doi: 10.1080/00222930110114437
|
[4] |
程浩楠, 王淑红, 程方平. 海洋桡足类作为生物活饵料的研究进展[J]. 海洋渔业, 2020, 42(4): 490−501.
Cheng Haonan, Wang Shuhong, Cheng Fangping. Research progress on marine copepods as live prey[J]. Marine Fisheries, 2020, 42(4): 490−501.
|
[5] |
张志南, 周红, 华尔, 等. 中国小型底栖生物研究的40年——进展与展望[J]. 海洋与湖沼, 2017, 48(4): 657−671.
Zhang Zhinan, Zhou Hong, Hua Er, et al. Meiofauna study for the forty years in China ——progress and prospect[J]. Oceanologia et Limnologia Sinica, 2017, 48(4): 657−671.
|
[6] |
曾艳艺, 黄小平. 日本虎斑猛水蚤的重金属急性毒性及其作为标准测试生物的潜在意义[J]. 生态毒理学报, 2011, 6(2): 182−188.
Zeng Yanyi, Huang Xiaoping. Acute toxicity of heavy metals to Tigriopus japonicus and its implication as a standard test animal[J]. Asian Journal of Ecotoxicology, 2011, 6(2): 182−188.
|
[7] |
罗海业. 南海中北部珊瑚礁区草皮海藻分布特征及其对石珊瑚的潜在影响[D]. 南宁: 广西大学, 2019.
Luo Haiye. The distribution characteristics of turf algae and its potential effect on scleractinian coral in the reefs of min-northern South China Sea[D]. Nanning: Guangxi University, 2019.
|
[8] |
Connell S D, Foster M S, Airoldi L. What are algal turfs? Towards a better description of turfs[J]. Marine Ecology Progress Series, 2014, 495: 299−307. doi: 10.3354/meps10513
|
[9] |
Wilson S K, Bellwood D R, Choat J H, et al. Detritus in the epilithic algal matrix and its use by coral reef fishes[J]. Oceanography and Marine Biology, 2003, 41: 279−309.
|
[10] |
Tebbett S B, Bellwood D R. Algal turf sediments on coral reefs: what's known and what's next[J]. Marine Pollution Bulletin, 2019, 149: 110542. doi: 10.1016/j.marpolbul.2019.110542
|
[11] |
Kramer M J, Bellwood D R, Bellwood O. Benthic crustacea on coral reefs: a quantitative survey[J]. Marine Ecology Progress Series, 2014, 511: 105−116. doi: 10.3354/meps10953
|
[12] |
Kramer M J, Bellwood D R, Bellwood O. Large-scale spatial variation in epilithic algal matrix cryptofaunal assemblages on the Great Barrier Reef[J]. Marine Biology, 2014, 161(9): 2183−2190. doi: 10.1007/s00227-014-2495-6
|
[13] |
Kramer M J, Bellwood O, Bellwood D R. The trophic importance of algal turfs for coral reef fishes: the crustacean link[J]. Coral reefs, 2013, 32(2): 575−583. doi: 10.1007/s00338-013-1009-1
|
[14] |
周天成. 三亚鹿回头珊瑚礁区礁石表生藻席演化与食源贡献研究[D]. 广州: 中国科学院南海海洋研究所, 2023.
Zhou Tiancheng. Studies on the evolution of epilithic algal matrix and their contribution to food sources in Luhuitou fringing reefs[D]. Guangzhou: South China Sea Institute of Oceanology, Chinese Academy of Sciences, 2023.
|
[15] |
Buffan-Dubau E, Carman K R. Diel feeding behavior of meiofauna and their relationships with microalgal resources[J]. Limnology and Oceanography, 2000, 45(2): 381−395. doi: 10.4319/lo.2000.45.2.0381
|
[16] |
Klumpp D W, McKinnon A D, Mundy C N. Motile cryptofauna of a coral reef: abundance, distribution and trophic potential[J]. Marine Ecology - Progress Series, 1988, 45(1/2): 95−108.
|
[17] |
Guidi L D. The effect of food composition on ingestion, development, and survival of a harpacticoid copepod, Tisbe cucumariae Humes[J]. Journal of Experimental Marine Biology and Ecology, 1984, 84(2): 101−110. doi: 10.1016/0022-0981(84)90204-1
|
[18] |
Matias-Peralta H M, Yusoff F M, Shariff M, et al. Reproductive performance, growth and development time of a tropical harpacticoid copepod, Nitocra affinis californica Lang, 1965 fed with different microalgal diets[J]. Aquaculture, 2012, 344−349: 168−173. doi: 10.1016/j.aquaculture.2012.02.026
|
[19] |
Pinto C S C, Souza-Santos L P, Santos P J P. Development and population dynamics of Tisbe biminiensis (Copepoda: Harpacticoida) reared on different diets[J]. Aquaculture, 2001, 198(3/4): 253−267.
|
[20] |
蒋霞敏, 郑亦周. 14种微藻总脂含量和脂肪酸组成研究[J]. 水生生物学报, 2003, 27(3): 243−247. doi: 10.3321/j.issn:1000-3207.2003.03.005
Jiang Xiamin, Zheng Yizhou. Total lipid and fatty acid composition of 14 species of mircoalgae[J]. Acta Hydrobiologica Sinica, 2003, 27(3): 243−247. doi: 10.3321/j.issn:1000-3207.2003.03.005
|
[21] |
高秀芝, 蒋霞敏, 张泽凌, 等. 5株新分离海洋硅藻总脂和脂肪酸组成的比较研究[J]. 生物学杂志, 2014, 31(1): 60−63,81. doi: 10.3969/j.issn.2095-1736.2014.01.060
Gao Xiuzhi, Jiang Xiamin, Zhang Zeling, et al. A comparative study on total lipid and fatty acid composition of five newly isolated marine diatom[J]. Journal of Biology, 2014, 31(1): 60−63,81. doi: 10.3969/j.issn.2095-1736.2014.01.060
|
[22] |
林锡煌, 尹希杰, 袁秋兰, 等. 7种富油微藻的超临界提取及脂肪酸分布特征[J]. 中国粮油学报, 2024, 39(6): 127−132.
Lin Xihuang, Yin Xijie, Yuan Qiulan, et al. Supercritical extraction of lipid from 7 microalgae species and fatty acid distribution characteristics[J]. Journal of the Chinese Cereals and Oils Association, 2024, 39(6): 127−132.
|
[23] |
Carotenuto Y, Ianora A, Buttino I, et al. Is postembryonic development in the copepod Temora stylifera negatively affected by diatom diets?[J]. Journal of Experimental Marine Biology and Ecology, 2002, 276(1/2): 49−66.
|
[24] |
李捷, 孙松, 李超伦, 等. 不同饵料对桡足类无节幼体存活、发育的影响研究[J]. 海洋科学, 2006, 30(12): 13−20. doi: 10.3969/j.issn.1000-3096.2006.12.004
Li Jie, Sun Song, Li Chaolun, et al. The effects of different diets on the survival and development of copepod nauplii[J]. Marine Sciences, 2006, 30(12): 13−20. doi: 10.3969/j.issn.1000-3096.2006.12.004
|
[25] |
尹洁慧, 季道德, 刘炜炜. 不同浓度海生根鞭毛虫(Oxyrrhis marina)对环小两栖猛水蚤Amphiascopsis cinctus(Claus, 1866)发育时间、存活率、繁殖的影响[J]. 生态科学, 2023, 42(5): 12−18.
Yin Jiehui, Ji Daode, Liu Weiwei. Effects of different flagellate (Oxyrrhis marina) concentration to the development, survival rate and reproduction of a benthnic copepod Amphiascopsis cinctus (Claus, 1866)[J]. Ecological Science, 2023, 42(5): 12−18.
|
[26] |
Miliou H, Moraïtou-Apostolopoulou M. Effects of seven diets on the population dynamics of laboratory cultured Tisbe holothuriae Humes (Copepoda, Harpacticoida)[J]. Helgolä nder Meeresuntersuchungen, 1991, 45(3): 345−356.
|
[27] |
Lee W Y, Zhang X K, Van Baalen C, et al. Feeding and reproductive performance of the harpacticoid Tisbe carolinensis(Copepoda, Crustacea) in four algal cultures[J]. Marine Ecology-Progress Series, 1985, 24: 273−279.
|
[28] |
Abu-Rezq T S, Yule A B, Teng S K. Ingestion, fecundity, growth rates and culture of the harpacticoid copepod, Tisbe furcata, in the laboratory[J]. Hydrobiologia, 1997, 347(1/3): 109−118. doi: 10.1023/A:1003071318933
|
[29] |
王笑月, 谢玺, 李大成, 等. 几种饵料对分叉小猛水蚤生殖量的影响[J]. 河北渔业, 2017(6): 6−9.
Wang Xiaoyue, Xie Xi, Li Dacheng, et al. Effect of several diets on the fecundity of Tisbe furcata[J]. Hebei Fisheries, 2017(6): 6−9.
|
[30] |
Fowler S W, Small L F, Kečkeš S. Effects of temperature and size on molting of euphausiid crustaceans[J]. Marine Biology, 1971, 11(1): 45−51. doi: 10.1007/BF00348020
|
[31] |
Caramujo M J, Boschker H T S, Admiraal W. Fatty acid profiles of algae mark the development and composition of harpacticoid copepods[J]. Freshwater Biology, 2008, 53(1): 77−90. doi: 10.1111/j.1365-2427.2007.01868.x
|
[32] |
Arndt C, Sommer U. Effect of algal species and concentration on development and fatty acid composition of two harpacticoid copepods, Tisbe sp. and Tachidius discipes, and a discussion about their suitability for marine fish larvae[J]. Aquaculture Nutrition, 2014, 20(1): 44−59. doi: 10.1111/anu.12051
|
[33] |
Yu Juan, Tian Jiyuan, Yang Guipeng. Ingestion, fecundity and population growth of Harpacticus sp. (Harpacticoida, copepod) fed on five species of algae[J]. Aquaculture Research, 2017, 48(5): 2209−2220. doi: 10.1111/are.13057
|
[34] |
De Troch M, Chepurnov V, Gheerardyn H, et al. Is diatom size selection by harpacticoid copepods related to grazer body size?[J]. Journal of Experimental Marine Biology and Ecology, 2006, 332(1): 1−11. doi: 10.1016/j.jembe.2005.10.017
|
[35] |
Ribeiro A C B, Souza-Santos L P. Mass culture and offspring production of marine harpacticoid copepod Tisbe biminiensis[J]. Aquaculture, 2011, 321(3/4): 280−288.
|
[36] |
Kramer M J, Bellwood D R, Bellwood O. Cryptofauna of the epilithic algal matrix on an inshore coral reef, Great Barrier Reef[J]. Coral Reefs, 2012, 31(4): 1007−1015. doi: 10.1007/s00338-012-0924-x
|
[37] |
Ackerman J L, Bellwood D R. Reef fish assemblages: a re-evaluation using enclosed rotenone stations[J]. Marine Ecology Progress Series, 2000, 206: 227−237. doi: 10.3354/meps206227
|
[38] |
Fleeger J W. The Potential to Mass-culture Harpacticoid Copepods for Use as Food for Larval Fish[M]//Lee C S, O’Bryen P J, Marcus N H. Copepods in Aquaculture. Ames: Blackwell Publishing, 2005: 11−24.
|
[39] |
Heath P L, Moore C G. Rearing dover sole larvae on Tisbe and Artemia diets[J]. Aquaculture International, 1997, 5(1): 29−39. doi: 10.1007/BF02764785
|
[40] |
Wilson S K, Fisher R, Pratchett M S, et al. Exploitation and habitat degradation as agents of change within coral reef fish communities[J]. Global Change Biology, 2008, 14(12): 2796−2809. doi: 10.1111/j.1365-2486.2008.01696.x
|
[41] |
Depczynski M, Bellwood D R. The role of cryptobenthic reef fishes in coral reef trophodynamics[J]. Marine Ecology Progress Series, 2003, 256: 183−191. doi: 10.3354/meps256183
|
[42] |
Ng D, Taira D, Heery E C, et al. Antagonistic effects of seawalls and urban sedimentation on epilithic algal matrix (EAM)-feeding fishes[J]. Marine Pollution Bulletin, 2021, 173: 113098. doi: 10.1016/j.marpolbul.2021.113098
|
[43] |
Wainwright P C, Bellwood D R, Westneat M W, et al. A functional morphospace for the skull of labrid fishes: patterns of diversity in a complex biomechanical system[J]. Biological Journal of the Linnean Society, 2004, 82(1): 1−25. doi: 10.1111/j.1095-8312.2004.00313.x
|