Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 46 Issue 8
Sep.  2024
Turn off MathJax
Article Contents
Huang Xinyu,Wang Caixia,Wei Jilin, et al. An assessment of global ocean tide simulation by a coupled climate model FGOALS-g3[J]. Haiyang Xuebao,2024, 46(8):63–73 doi: 10.12284/hyxb2024091
Citation: Huang Xinyu,Wang Caixia,Wei Jilin, et al. An assessment of global ocean tide simulation by a coupled climate model FGOALS-g3[J]. Haiyang Xuebao,2024, 46(8):63–73 doi: 10.12284/hyxb2024091

An assessment of global ocean tide simulation by a coupled climate model FGOALS-g3

doi: 10.12284/hyxb2024091
  • Received Date: 2024-01-18
  • Rev Recd Date: 2024-07-30
  • Available Online: 2024-08-12
  • Publish Date: 2024-09-26
  • Tides act an important role in the transfer of ocean energy and mixing, and provide the main energy to maintain the global thermohaline circulation and influence the global ocean circulation. Previous work has explored the sensitivity of ocean circulation states to tidal forcing within an individual ocean model at a low resolution. To further investigate the influence of tidal forcing on ocean circulation and climate states, it is imperative to incorporate the tidal forcing into a coupled climate model. In this paper, the eight major equilibrium constituents are included into the coupled climate model FGOALS-g3 explicitly, and we evaluate its ability to simulate global ocean tides, which lays the basic for the further research on the influence of tidal forcing on large-scale circulation and climate states.We apply tidal harmonic analysis on the sea surface height data to obtain the harmonic constants of each constituent, and compare the model results with the global tidal models TPXO9 and FES2014, and the open ocean tide dataset from st102. The results show that the coupled model FGOALS-g3 can effectively simulate the barotropic tides in the global ocean, with relatively small errors compared to the global tidal models and the observation dataset. Compared with these two global tidal models, the mean square error is relatively small, and the errors are mostly distributed in the region of larger amplitudes. And compared with st102 dataset, the average amplitude relative errors of the eight major equilibrium constituents simulated by FGOALS-g3 are all less than 10%, and the total mean square errors are all less than 10 cm.
  • loading
  • [1]
    Huang Ruixin. Mixing and energetics of the oceanic thermohaline circulation[J]. Journal of Physical Oceanography, 1999, 29(4): 727−746. doi: 10.1175/1520-0485(1999)029<0727:MAEOTO>2.0.CO;2
    [2]
    MacKinnon J. Mountain waves in the deep ocean[J]. Nature, 2013, 501(7467): 321−322. doi: 10.1038/501321a
    [3]
    Munk W, Wunsch C. Abyssal recipes II: energetics of tidal and wind mixing[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1998, 45(12): 1977−2010. doi: 10.1016/S0967-0637(98)00070-3
    [4]
    Wang Xiaowei, Liu Zhiyu, Peng Shiqiu. Impact of tidal mixing on water mass transformation and circulation in the South China Sea[J]. Journal of Physical Oceanography, 2017, 47(2): 419−432. doi: 10.1175/JPO-D-16-0171.1
    [5]
    Wunsch C, Ferrari R. Vertical mixing, energy, and the general circulation of the oceans[J]. Annual Review of Fluid Mechanics, 2004, 36: 281−314. doi: 10.1146/annurev.fluid.36.050802.122121
    [6]
    EgbertG D, Gary R D. Semi-diurnal and diurnal tidal dissipation from TOPEX/Poseidon altimetry[J]. Geophysical Research Letters, 2003, 30(17): 1907.
    [7]
    Jayne S R, St. Laurent L C. Parameterizing tidal dissipation over rough topography[J]. Geophysical Research Letters, 2001, 28(5): 811−814. doi: 10.1029/2000GL012044
    [8]
    Bryan K. A numerical method for the study of the circulation of the world ocean[J]. Journal of Computational Physics, 1997, 135(2): 154−169. doi: 10.1006/jcph.1997.5699
    [9]
    Cox M D. A primitive equation 3-dimensional model of the ocean[R]. Princeton: Princeton University, 1984.
    [10]
    Killworth P D, Webb D J, Stainforth D, et al. The development of a free-surface bryan-cox-semtner ocean model[J]. Journal of Physical Oceanography, 1991, 21(9): 1333−1348. doi: 10.1175/1520-0485(1991)021<1333:TDOAFS>2.0.CO;2
    [11]
    St. Laurent L C, Simmons H L, Jayne S R. Estimating tidally driven mixing in the deep ocean[J]. Geophysical Research Letters, 2002, 29(23): 2106.
    [12]
    Simmons H L, Jayne S R, St. Laurent L C, et al. Tidally driven mixing in a numerical model of the ocean general circulation[J]. Ocean Modelling, 2004, 6(3/4): 245−263.
    [13]
    Yu Yi, Liu Hailong, Lan Jian. The influence of explicit tidal forcing in a climate ocean circulation model[J]. Acta Oceanologica Sinica, 2016, 35(9): 42−50. doi: 10.1007/s13131-016-0931-9
    [14]
    Saenko O A, Merryfield W J. On the effect of topographically enhanced mixing on the global ocean circulation[J]. Journal of Physical Oceanography, 2005, 35(5): 826−834. doi: 10.1175/JPO2722.1
    [15]
    Jayne S R. The impact of abyssal mixing parameterizations in an ocean general circulation model[J]. Journal of Physical Oceanography, 2009, 39(7): 1756−1775. doi: 10.1175/2009JPO4085.1
    [16]
    Melet A, Hallberg R, Legg S, et al. Sensitivity of the ocean state to the vertical distribution of internal-tide-driven mixing[J]. Journal of Physical Oceanography, 2013, 43(3): 602−615. doi: 10.1175/JPO-D-12-055.1
    [17]
    Song Pengyang, Sidorenko D, Scholz P, et al. The tidal effects in the Finite-volumE Sea ice–Ocean Model (FESOM2.1): a comparison between parameterised tidal mixing and explicit tidal forcing[J]. Geoscientific Model Development, 2023, 16(1): 383−405. doi: 10.5194/gmd-16-383-2023
    [18]
    Thomas M, Sündermann J, Maier-Reimer E. Consideration of ocean tides in an OGCM and impacts on subseasonal to decadal polar motion excitation[J]. Geophysical Research Letters, 2001, 28(12): 2457−2460. doi: 10.1029/2000GL012234
    [19]
    Schiller A. Effects of explicit tidal forcing in an OGCM on the water-mass structure and circulation in the Indonesian through flow region[J]. Ocean Modelling, 2004, 6(1): 31−49. doi: 10.1016/S1463-5003(02)00057-4
    [20]
    Schiller A, Fiedler R. Explicit tidal forcing in an ocean general circulation model[J]. Geophysical Research Letters, 2007, 34(3): L03611.
    [21]
    Müller M, Haak H, Jungclaus J H, et al. The effect of ocean tides on a climate model simulation[J]. Ocean Modelling, 2010, 35(4): 304−313. doi: 10.1016/j.ocemod.2010.09.001
    [22]
    Jin Jiangbo, Guo Run, Zhang Minghua, et al. Formulation of a new explicit tidal scheme in revised LICOM2.0[J]. Geoscientific Model Development, 2022, 15(10): 4259−4273. doi: 10.5194/gmd-15-4259-2022
    [23]
    Arbic B K, Wallcraft A J, Metzger E J. Concurrent simulation of the eddying general circulation and tides in a global ocean model[J]. Ocean Modelling, 2010, 32(3/4): 175−187.
    [24]
    Shriver J F, Arbic B K, Richman J G, et al. An evaluation of the barotropic and internal tides in a high-resolution global ocean circulation model[J]. Journal of Geophysical Research: Oceans, 2012, 117(C10): C10024.
    [25]
    Müller M, Cherniawsky J Y, Foreman M G G, et al. Global M2 internal tide and its seasonal variability from high resolution ocean circulation and tide modeling[J]. Geophysical Research Letters, 2012, 39(19): L19607.
    [26]
    Müller M. On the space-and time-dependence of barotropic-to-baroclinic tidal energy conversion[J]. Ocean Modelling, 2013, 72: 242−252. doi: 10.1016/j.ocemod.2013.09.007
    [27]
    Li Lijuan, Yu Yongqiang, Tang Yanli, et al. The flexible global ocean-atmosphere-land system model grid-point version 3 (FGOALS-g3): description and evaluation[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(9): e2019MS002012. doi: 10.1029/2019MS002012
    [28]
    Li Lijuan, Dong Li, Xie Jinbo, et al. The GAMIL3: model description and evaluation[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(15): e2020JD032574. doi: 10.1029/2020JD032574
    [29]
    Xie Zhenghui, Wang Longhuan, Wang Yan, et al. Land surface model CAS-LSM: model description and evaluation[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(12): e2020MS002339. doi: 10.1029/2020MS002339
    [30]
    Lin Pengfei, Yu Zhipeng, Liu Hailong, et al. LICOM model datasets for the CMIP6 ocean model intercomparison project[J]. Advances in Atmospheric Sciences, 2020, 37(3): 239−249. doi: 10.1007/s00376-019-9208-5
    [31]
    Craig A P, Vertenstein M, Jacob R. A new flexible coupler for earth system modeling developed for CCSM4 and CESM1[J]. The International Journal of High Performance Computing Applications, 2012, 26(1): 31−42. doi: 10.1177/1094342011428141
    [32]
    Wang Yaqi, Yu Zipeng, Lin Pengfei, et al. FGOALS-g3 model datasets for CMIP6 flux-anomaly-forced model intercomparison project[J]. Advances in Atmospheric Sciences, 2020, 37(10): 1093−1101. doi: 10.1007/s00376-020-2045-8
    [33]
    Lin Pengfei, Zhao Bowen, Wei Jilin, et al. The super-large ensemble experiments of CAS FGOALS-g3[J]. Advances in Atmospheric Sciences, 2022, 39(10): 1746−1765. doi: 10.1007/s00376-022-1439-1
    [34]
    Zheng Weipeng, Yu Yongqiang, Luan Yihua, et al. CAS-FGOALS datasets for the two interglacial epochs of the holocene and the last interglacial in PMIP4[J]. Advances in Atmospheric Sciences, 2020, 37(10): 1034−1044. doi: 10.1007/s00376-020-9290-8
    [35]
    Wei Jilin, Liu Hailong, Zhao Yan, et al. Simulation of the climate and ocean circulations in the Middle Miocene Climate Optimum by a coupled model FGOALS-g3[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 617: 111509. doi: 10.1016/j.palaeo.2023.111509
    [36]
    Pu Ye, Liu Hongbo, Yan Ruojing, et al. CAS FGOALS-g3 model datasets for the CMIP6 scenario model intercomparison project (ScenarioMIP)[J]. Advances in Atmospheric Sciences, 2020, 37(10): 1081−1092. doi: 10.1007/s00376-020-2032-0
    [37]
    Griffies S M, Biastoch A, Böning C, et al. Coordinated ocean-ice reference experiments (COREs)[J]. Ocean Modelling, 2009, 26(1/2): 1−46.
    [38]
    Hendershott M C. The effects of solid earth deformation on global ocean tides[J]. Geophysical Journal International, 1972, 29(4): 389−402. doi: 10.1111/j.1365-246X.1972.tb06167.x
    [39]
    Eyring V, Bony S, Meehl G A, et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization[J]. Geoscientific Model Development, 2016, 9(5): 1937−1958. doi: 10.5194/gmd-9-1937-2016
    [40]
    Egbert G D, Erofeeva S Y. Efficient inverse modeling of barotropic ocean tides[J]. Journal of Atmospheric and Oceanic Technology, 2002, 19(2): 183−204. doi: 10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
    [41]
    Lyard F H, Allain D J, Cancet M, et al. FES2014 global ocean tide atlas: design and performance[J]. Ocean Science, 2021, 17(3): 615−649. doi: 10.5194/os-17-615-2021
    [42]
    Shum C K, Woodworth P L, Andersen O B, et al. Accuracy assessment of recent ocean tide models[J]. Journal of Geophysical Research: Oceans, 1997, 102(C11): 25173−25194. doi: 10.1029/97JC00445
    [43]
    von Storch JS, Hertwig E, Lüschow V, et al. Open-ocean tides simulated by ICON-O, version icon-2.6.6[J]. Geoscientific Model Development, 2023, 16(17): 5179−5196. doi: 10.5194/gmd-16-5179-2023
    [44]
    Arbic B K. Incorporating tides and internal gravity waves within global ocean general circulation models: a review[J]. Progress in Oceanography, 2022, 206: 102824. doi: 10.1016/j.pocean.2022.102824
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(3)

    Article views (131) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return