Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 46 Issue 10
Oct.  2024
Turn off MathJax
Article Contents
Qin Zhipeng,Chen Yongping,Pan Yi, et al. Research on typhoon wave height prediction method based on BO-LSTM neural network model[J]. Haiyang Xuebao,2024, 46(10):98–107 doi: 10.12284/hyxb2024089
Citation: Qin Zhipeng,Chen Yongping,Pan Yi, et al. Research on typhoon wave height prediction method based on BO-LSTM neural network model[J]. Haiyang Xuebao,2024, 46(10):98–107 doi: 10.12284/hyxb2024089

Research on typhoon wave height prediction method based on BO-LSTM neural network model

doi: 10.12284/hyxb2024089
  • Received Date: 2024-01-03
  • Rev Recd Date: 2024-07-15
  • Available Online: 2024-10-18
  • Publish Date: 2024-10-30
  • With the impact of climate change such as rising sea levels and intensified storms, it is particularly important to quickly and accurately predict typhoon wave heights for coastal protection and marine disaster prevention. This article first generates a large number of virtual typhoons based on the TCWiSE model, uses the SWAN numerical model to calculate the significant wave height at the observation station during the typhoon, and constructs a sample database of typhoon waves; Then evaluate and select the input factors and hyperparameters of the BO-LSTM neural network model, and train and test it using a sample database. The results show that the constructed virtual typhoon has good similarity with historical typhoons, which can provide sufficient data basis for the construction of intelligent typhoon wave height prediction models; The BO-LSTM model built can quickly achieve intelligent prediction of typhoon wave height at a single station, and has prediction accuracy comparable to SWAN. Its prediction accuracy in long-term forecasting scenarios is significantly better than RF and BPNN models; Adding future typhoon data to the input of the BO-LSTM model further improves the accuracy and duration of the model’s forecast. Its Bias, RMSE, and R2 for predicting the next 24 h are −0.102 m, 0.494 m, and 0.855, respectively. The research results provide a feasible approach for intelligent forecasting of typhoon waves under extreme weather conditions.
  • loading
  • [1]
    陶爱峰, 沈至淳, 李硕, 等. 中国灾害性海浪研究进展[J]. 科技导报, 2018, 36(14): 26−34.

    Tao Aifeng, Shen Zhichun, Li Shuo, et al. Research progrecs for disastrous waves in China[J]. Science & Technology Review, 2018, 36(14): 26−34.
    [2]
    屈远, 高志一, 蔡靖泽, 等. 数值模型和智能模型的海浪预报能力比较[J]. 海洋预报, 2022, 39(5): 17−26. doi: 10.11737/j.issn.1003-0239.2022.05.003

    Qu Yuan, Gao Zhiyi, Cai Jingze, et al. Comparison of wave prediction ability between numerical model and AI model[J]. Marine Forecasts, 2022, 39(5): 17−26. doi: 10.11737/j.issn.1003-0239.2022.05.003
    [3]
    Wilson B W. Numerical prediction of ocean waves in the North Atlantic for December, 1959[J]. Deutsche Hydrografische Zeitschrift, 1965, 18(3): 114−130. doi: 10.1007/BF02333333
    [4]
    许富祥, 许林之. 海浪预报方法综述(二)[J]. 海洋预报, 1989, 6(4): 50−58.

    Xu Fuxiang, Xu Linzhi. Overview of wave forecasting methods (Ⅱ)[J]. Marine Forecasts, 1989, 6(4): 50−58.
    [5]
    刘凡, 陆小敏, 徐丹, 等. 海浪预报方法研究进展[J]. 河海大学学报(自然科学版), 2021, 49(5): 387−393.

    Liu Fan, Lu Xiaomin, Xu Dan, et al. Research progress of ocean waves forecasting method[J]. Journal of Hohai University (Natural Sciences), 2021, 49(5): 387−393.
    [6]
    Fan Shuntao, Xiao Nianhao, Dong Sheng. A novel model to predict significant wave height based on long short-term memory network[J]. Ocean Engineering, 2020, 205: 107298. doi: 10.1016/j.oceaneng.2020.107298
    [7]
    Zhou Shuyi, Xie Wenhong, Lu Yuxiang, et al. ConvLSTM-based wave forecasts in the South and East China Seas[J]. Frontiers in Marine Science, 2021, 8: 680079. doi: 10.3389/fmars.2021.680079
    [8]
    Gao Zhiyi, Liu Xing, Yv Fujiang, et al. Learning wave fields evolution in North West Pacific with deep neural networks[J]. Applied Ocean Research, 2023, 130: 103393. doi: 10.1016/j.apor.2022.103393
    [9]
    Pan Yi, Chen Yongping, Li Jiangxia, et al. Improvement of wind field hindcasts for tropical cyclones[J]. Water Science and Engineering, 2016, 9(1): 58−66. doi: 10.1016/j.wse.2016.02.002
    [10]
    Ying Ming, Zhang Wei, Yu Hui, et al. An overview of the China meteorological administration tropical cyclone database[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(2): 287−301. doi: 10.1175/JTECH-D-12-00119.1
    [11]
    Lu Xiaoqin, Yu Hui, Ying Ming, et al. Western North Pacific tropical cyclone database created by the China meteorological administration[J]. Advances in Atmospheric Sciences, 2021, 38(4): 690−699. doi: 10.1007/s00376-020-0211-7
    [12]
    Nederhoff K, Hoek J, Leijnse T, et al. Simulating synthetic tropical cyclone tracks for statistically reliable wind and pressure estimations[J]. Natural Hazards and Earth System Sciences, 2021, 21(3): 861−878. doi: 10.5194/nhess-21-861-2021
    [13]
    Booij N, Ris C R, Holthuijsen H L. A third-generation wave model for coastal regions: 1. Model description and validation[J]. Journal of Geophysical Research: Oceans, 1999, 104(C4): 7649−7666. doi: 10.1029/98JC02622
    [14]
    Holland G J. An analytic model of the wind and pressure profiles in hurricanes[J]. Monthly Weather Review, 1980, 108(8): 1212−1218. doi: 10.1175/1520-0493(1980)108<1212:AAMOTW>2.0.CO;2
    [15]
    杨万康, 尹宝树, 伊小飞, 等. 基于Holland风场的台风浪数值计算[J]. 水利水运工程学报, 2017(4): 28−34.

    Yang Wankang, Yin Baoshu, Yi Xiaofei, et al. Numerical calculation and research of typhoon waves based on Holland wind field[J]. Hydro-Science and Engineering, 2017(4): 28−34.
    [16]
    马秀玲, 魏来. 基于Holland台风模型及三重嵌套海浪模式的台风浪数值模拟研究[J]. 海洋与湖沼, 2024, 55(1): 51−64.

    Ma Xiuling, Wei Lai. Numerical simulation of typhoon waves based on the Holland typhoon model and triple nested wave pattern[J]. Oceanologia et Limnologia Sinica, 2024, 55(1): 51−64.
    [17]
    Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735−1780. doi: 10.1162/neco.1997.9.8.1735
    [18]
    李亚茹, 张宇来, 王佳晨. 面向超参数估计的贝叶斯优化方法综述[J]. 计算机科学, 2022, 49(S1): 86−92. doi: 10.11896/jsjkx.210300208

    Li Yaru, Zhang Yulai, Wang Jiachen. Survey on Bayesian optimization methods for hyper-parameter tuning[J]. Computer Science, 2022, 49(S1): 86−92. doi: 10.11896/jsjkx.210300208
    [19]
    Shahriari B, Swersky K, Wang Ziyu, et al. Taking the human out of the loop: a review of Bayesian optimization[J]. Proceedings of the IEEE, 2016, 104(1): 148−175. doi: 10.1109/JPROC.2015.2494218
    [20]
    Georgiou P N. Design wind speeds in tropical cyclone-prone regions[D]. London, Canada: Western University, 1986.
    [21]
    Vickery P J, Wadhera D, Twisdale L A, et al. U. S. Hurricane wind speed risk and uncertainty[J]. Journal of Structural Engineering, 2009, 135(3): 301−320. doi: 10.1061/(ASCE)0733-9445(2009)135:3(301)
    [22]
    郑桥. 浙江近海典型台风浪和寒潮浪的精细化数值模拟[D]. 杭州: 浙江大学, 2019.

    Zheng Qiao. Numerical simulation of typical typhoon waves and cold waves in Zhejiang adjacent seas with refined grids[D]. Hangzhou: Zhejiang University, 2019.
    [23]
    季余, 朱业, 李莉, 等. 浙江沿海台风浪模式的参数适应性研究[J]. 海洋预报, 2023, 40(2): 22−31. doi: 10.11737/j.issn.1003-0239.2023.02.003

    Ji Yu, Zhu Ye, Li Li, et al. Study on the parameters adaptability of typhoon wave model in Zhejiang coastal area[J]. Marine Forecasts, 2023, 40(2): 22−31. doi: 10.11737/j.issn.1003-0239.2023.02.003
    [24]
    邱锡鹏. 神经网络与深度学习[M]. 北京: 机械工业出版社, 2020.

    Qiu Xipeng. Neural Networks and Deep Learning[M]. Beijing: China Machine Press, 2020.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article views (98) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return