Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 46 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
Liang Xinjie,Xu Minhui,Ye yingying, et al. Analysis of expression patterns of key genes in the mTOR signaling pathway in the larval growth and development of Mytilus coruscus[J]. Haiyang Xuebao,2024, 46(7):110–119 doi: 10.12284/hyxb2024088
Citation: Liang Xinjie,Xu Minhui,Ye yingying, et al. Analysis of expression patterns of key genes in the mTOR signaling pathway in the larval growth and development of Mytilus coruscus[J]. Haiyang Xuebao,2024, 46(7):110–119 doi: 10.12284/hyxb2024088

Analysis of expression patterns of key genes in the mTOR signaling pathway in the larval growth and development of Mytilus coruscus

doi: 10.12284/hyxb2024088
  • Received Date: 2024-01-28
  • Rev Recd Date: 2024-04-18
  • Available Online: 2024-08-13
  • Publish Date: 2024-07-01
  • In the field of aquaculture, a comprehensive exploration of the growth and developmental mechanisms of Mytilus coruscus lays the theoretical foundation for molecular regulation of growth and development. In order to investigate the expression patterns of genes associated with the growth and development differences in M. coruscus larvae, this study employed transcriptome sequencing and real-time quantitative PCR analysis techniques, conducting a preliminary examination of the differential expression of genes and molecular pathways related to growth characteristics. The research places particular emphasis on the impact and regulatory roles of the mammalian target of rapamycin (mTOR) signaling pathway in the growth and development of M. coruscus larvae. By analyzing the gene expression patterns at different developmental stages (Trochophore larvae stage, D-veliger larvae stage, Veliconcha larvae stage, Pediveliger larvae stage, and Juvenile stage), the results suggest that the mTOR signaling pathway may play a specific role in the growth and development of M. coruscus larvae. Seven key genes associated with growth were successfully identified. As the developmental process progresses, the expression of genes in the mTOR signaling pathway exhibits dynamic changes across different developmental stages. Among these changes, the expression levels of the PI3K, TSCI/2, and mTOR genes initially increased, followed by a decrease, and subsequently rose again. In contrast, IGFI expression exhibited an initial increase followed by a decline. Meanwhile, the expression of EIF4B, RPS6KB, and AKT genes demonstrated an overall downward trend. This differential gene expression pattern reflects the potential regulatory influence of the mTOR signaling pathway on cell fate and biological functions during various developmental stages of M. coruscus larvae, thereby impacting their growth and development. Therefore, this study provides a preliminary exploration of the expression patterns of key genes in the mTOR signaling pathway during the growth and development of M. coruscus larvae. These genes play a crucial role in regulating the molecular functions and growth characteristics of M. coruscus larvae, offering foundational data for a deeper understanding of the physiological adaptation, metabolic processes, and growth variations in marine bivalves.
  • loading
  • [1]
    Evans S, Langdon C. Direct and indirect responses to selection on individual body weight in the Pacific oyster (Crassostrea gigas)[J]. Aquaculture, 2006, 261(2): 546−555. doi: 10.1016/j.aquaculture.2006.07.037
    [2]
    Nie Hongtao, Zheng Mengge, Wang Zhengxing, et al. Transcriptomic analysis provides insights into candidate genes and molecular pathways involved in growth of Manila clam Ruditapes philippinarum[J]. Functional & Integrative Genomics, 2021, 21(3): 341−353.
    [3]
    Li Guipu, Li Jiong, Li Duo. Seasonal variation in nutrient composition of Mytilus coruscus from China[J]. Journal of Agricultural and Food Chemistry, 2010, 58(13): 7831−7837. doi: 10.1021/jf101526c
    [4]
    Turja R, Soirinsuo A, Budzinski H, et al. Biomarker responses and accumulation of hazardous substances in mussels (Mytilus trossulus) transplanted along a pollution gradient close to an oil terminal in the Gulf of Finland (Baltic Sea)[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2013, 157(1): 80−92.
    [5]
    苏秀榕, 李太武, 丁明进. 紫贻贝和厚壳贻贝营养成分的研究[J]. 中国海洋药物, 1998, 17(02): 30−32.

    Su Xiurong, Li Taiwu, Ding Mingjin. Studies on the nutritive contents of the mussel Mytilus edulis and Mytilus coruscus[J]. Chinese Journal of Marine Drugs, 1998, 17(2): 30−32.
    [6]
    Bishop C D, Erezyilmaz D F, Flatt T, et al. What is metamorphosis?[J]. Integrative and Comparative Biology, 2006, 46(6): 655−661. doi: 10.1093/icb/icl004
    [7]
    Zhang Xiaolin, Li Siyuan, He Jianyu, et al. Microalgal feeding preference of Mytilus coruscus and its effects on fatty acid composition and microbes of the digestive gland[J]. Aquaculture Reports, 2022, 23: 101024. doi: 10.1016/j.aqrep.2022.101024
    [8]
    Li Yifeng, Guo Xingpan, Yang Jinlong, et al. Effects of bacterial biofilms on settlement of plantigrades of the mussel Mytilus coruscus[J]. Aquaculture, 2014, 433: 434−441. doi: 10.1016/j.aquaculture.2014.06.031
    [9]
    Wang Chong, Bao Weiyang, Gu Zhongqi, et al. Larval settlement and metamorphosis of the mussel Mytilus coruscus in response to natural biofilms[J]. Biofouling, 2012, 28(3): 249−256. doi: 10.1080/08927014.2012.671303
    [10]
    Heitman J, Movva N R, Hall M N. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast[J]. Science, 1991, 253(5022): 905−909. doi: 10.1126/science.1715094
    [11]
    Loewit R, Jacinto E, Wullschleger S, et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control[J]. Molecular Cell, 2002, 10(3): 457−468. doi: 10.1016/S1097-2765(02)00636-6
    [12]
    Magnuson B, Ekim B, Fingar D C. Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks[J]. Biochemical Journal, 2012, 441(1): 1−21. doi: 10.1042/BJ20110892
    [13]
    Zou Zhilin, Tao Tao, Li Hongmei, et al. mTOR signaling pathway and mTOR inhibitors in cancer: progress and challenges[J]. Cell & Bioscience, 2020, 10(1): 31.
    [14]
    陈佳艳, 唐易, 戴柳叶, 等. 黄颡鱼雌雄性的生理生化和mTOR信号通路基因表达分析[J]. 激光生物学报, 2023, 32(1): 26−35. doi: 10.3969/j.issn.1007-7146.2023.01.005

    Chen Jiayan, Tang Yi, Dai Liuye, et al. Physiological and biochemical indicators and mTOR signaling pathway gene expression analysis in female and male yellow catfish (Pelteobagrus fulvidraco)[J]. Acta Laser Biology Sinica, 2023, 32(1): 26−35. doi: 10.3969/j.issn.1007-7146.2023.01.005
    [15]
    梁晓芳. 花鲈利用鱼粉和植物蛋白源的选择性摄食调控机制研究[D]. 北京: 中国农业科学院, 2017.

    Liang Xiaofang. Mechanism on feed intake regulation of Lateolabrax japonicus when fishmeal was replaced by plant protein[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017.
    [16]
    Xie Xi, Teng Weiming, Sun Xiujun, et al. Transcriptomic analysis of the ark shell Scapharca kagoshimensis: De novo assembly and identification of genes and pathways involved growth[J]. Aquaculture Reports, 2020, 18: 100522. doi: 10.1016/j.aqrep.2020.100522
    [17]
    Guan Yunyan, He Maoxian, Wu Houbo. Differential mantle transcriptomics and characterization of growth-related genes in the diploid and triploid pearl oyster Pinctada fucata[J]. Marine Genomics, 2017, 33: 31−38. doi: 10.1016/j.margen.2017.01.001
    [18]
    Hrdlickova R, Toloue M, Tian Bin. RNA-Seq methods for transcriptome analysis[J]. WIREs RNA, 2017, 8(1): e1364. doi: 10.1002/wrna.1364
    [19]
    Mutz K O, Heilkenbrinker A, Lönne M, et al. Transcriptome analysis using next-generation sequencing[J]. Current Opinion in Biotechnology, 2013, 24(1): 22−30. doi: 10.1016/j.copbio.2012.09.004
    [20]
    Yang Jinlong, Li Wushuang, Liang Xiao, et al. Effects of adrenoceptor compounds on larval metamorphosis of the mussel Mytilus coruscus[J]. Aquaculture, 2014, 426: 282−287.
    [21]
    杨金龙, 陈芋如, 郭行磐, 等. 胆碱受体化合物对厚壳贻贝幼虫变态的调控作用[J]. 水产学报, 2014, 38(12): 2012−2017.

    Yang Jinlong, Chen Yuru, Guo Xingpan, et al. Effects of cholinoceptor compounds on larval metamorphosis of the mussel Mytilus coruscus[J]. Journal of Fisheries of China, 2014, 38(12): 2012−2017.
    [22]
    杨金龙, 李树恒, 刘志伟, 等. 厚壳贻贝胚胎和早期幼虫神经系统发育的初步研究[J]. 水产学报, 2013, 37(4): 512−519. doi: 10.3724/SP.J.1231.2013.38433

    Yang Jinlong, Li Shuheng, Liu Zhiwei, et al. Primary study on neuronal development of the embryo and early larvae of the mussel Mytilus coruscus[J]. Journal of Fisheries of China, 2013, 37(4): 512−519. doi: 10.3724/SP.J.1231.2013.38433
    [23]
    Ahmad I, Del Mar Jiménez-Gasco M, Luthe D S, et al. Endophytic Metarhizium robertsii promotes maize growth, suppresses insect growth, and alters plant defense gene expression[J]. Biological Control, 2020, 144: 104167. doi: 10.1016/j.biocontrol.2019.104167
    [24]
    Kumar V, Goutam R S, Park S, et al. Functional roles of FGF signaling in early development of vertebrate embryos[J]. Cells, 2021, 10(8): 2148. doi: 10.3390/cells10082148
    [25]
    Li Mengyang. The origination of growth hormone/insulin-like growth factor system: a story from ancient basal chordate amphioxus[J]. Frontiers in Endocrinology, 2022, 13: 825722. doi: 10.3389/fendo.2022.825722
    [26]
    Sheng Hui, Zhang Junxing, Li Fen, et al. Genome-wide identification and characterization of bovine fibroblast growth factor (FGF) gene and its expression during adipocyte differentiation[J]. International Journal of Molecular Sciences, 2023, 24(6): 5663. doi: 10.3390/ijms24065663
    [27]
    徐跃峰. Wnt及相关基因在厚壳贻贝幼虫生长发育过程中的作用[D]. 上海: 上海海洋大学, 2018.

    Xu Yuefeng. Effects of Wnt and related genes on larval development of the Mytilus coruscus[D]. Shanghai: Shanghai Ocean University, 2018.
    [28]
    Wen Ming, Li Ertao, Chen Qi, et al. A herbivore-induced plant volatile of the host plant acts as a collective foraging signal to the larvae of the meadow moth, Loxostege sticticalis (Lepidoptera: Pyralidae)[J]. Journal of Insect Physiology, 2019, 118: 103941. doi: 10.1016/j.jinsphys.2019.103941
    [29]
    Xu Minhui, Li Zhong, Liang Xinjie, et al. Transcriptomic analysis provides insights into candidate genes and molecular pathways involved in growth of Mytilus coruscus larvae[J]. International Journal of Molecular Sciences, 2024, 25(3): 1898. doi: 10.3390/ijms25031898
    [30]
    Laplante M, Sabatini D M. mTOR signaling at a glance[J]. Journal of Cell Science, 2009, 122(20): 3589−3594. doi: 10.1242/jcs.051011
    [31]
    Saxton R A, Sabatini D M. mTOR signaling in growth, metabolism, and disease[J]. Cell, 2017, 168(6): 960−976. doi: 10.1016/j.cell.2017.02.004
    [32]
    Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the $ 2^{-\Delta \Delta C_{T}} $ method[J]. Methods, 2001, 25(4): 402−408. doi: 10.1006/meth.2001.1262
    [33]
    Kim L C, Cook R S, Chen J. mTORC1 and mTORC2 in cancer and the tumor microenvironment[J]. Oncogene, 2017, 36(16): 2191−2201. doi: 10.1038/onc.2016.363
    [34]
    Panwar V, Singh A, Bhatt M, et al. Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease[J]. Signal transduction and targeted therapy, 2023, 8(1): 375.
    [35]
    Ma Xiaoju, Blenis J. Molecular mechanisms of mTOR-mediated translational control[J]. Nature Reviews Molecular Cell Biology, 2009, 10(5): 307−318. doi: 10.1038/nrm2672
    [36]
    张治楠, 梁丽艳, 连嘉惠, 等. 中枢神经系统PI3K/AKT/mTOR信号通路研究进展[J]. 实用医学杂志, 2020, 36(5): 689−694. doi: 10.3969/j.issn.1006-5725.2020.05.028

    Zhang Zhinan, Liang Liyan, Lian Jiahui, et al. PI3K/AKT/mTOR signaling pathway in central nervous system[J]. The Journal of Practical Medicine, 2020, 36(5): 689−694. doi: 10.3969/j.issn.1006-5725.2020.05.028
    [37]
    孙刘见. 碱胁迫通过激活MAPK通路和抑制mTOR的表达诱导中华绒螯蟹肝胰腺自噬[D]. 哈尔滨: 东北农业大学, 2023.

    Sun Liujian. Alkali exposure activation MAPK pathway and inhibition of mTOR expression induced autophagy in hepatopancreas of Eriocheir sinensis[D]. Harbin: Northeast Agricultural University, 2023.
    [38]
    冷雨, 李清山, 何克, 等. 瑞香素调节AMPK/mTOR信号通路对IL-1β诱导的关节软骨细胞自噬和凋亡的影响[J]. 河北医药, 2023, 45(22): 3365−3369,3376. doi: 10.3969/j.issn.1002-7386.2023.22.001

    Leng Yu, Li Qingshan, He Ke, et al. Impacts of daphnetin on IL-1β-induced autophagy and apoptosis of articular chondrocytes by regulating the AMPK/mTOR signaling pathway[J]. Hebei Medical Journal, 2023, 45(22): 3365−3369,3376. doi: 10.3969/j.issn.1002-7386.2023.22.001
    [39]
    钱晓丽. 饲料亮氨酸水平对斜带石斑鱼生长及其mTOR信号通路的影响[D]. 厦门: 集美大学, 2018.

    Qian Xiaoli. Effects of Leucine levels in diets on the growth and mTOR signaling pathway of grouper (Epinephelus coioides)[D]. Xiamen: Jimei University, 2018.
    [40]
    王志钢. mTOR信号通路在山羊胎儿成纤维细胞生长调控中的作用与机制[Z]. 呼和浩特: 内蒙古大学, 2012.

    Wang Zhigang. The role and mechanism of mTOR signaling pathway in the regulation of goat fetal fibroblast growth[Z]. Hohhot: Inner Mongolia University, 2012.
    [41]
    颜成瑞. 厚壳贻贝Hox基因家族结构与表达模式的初步探究[D]. 舟山: 浙江海洋大学, 2022.

    Yan Chengrui. Preliminary exploration of Hox Gene family structure and expression pattern in Mytilus coruscus[D]. Zhoushan: Zhejiang Ocean University, 2022.
    [42]
    池晓娟. 真核翻译起始因子eIF4B在甲型流感病毒复制中的作用[D]. 福州: 福建农林大学, 2013.

    Chi Xiaojuan. The role of eukaryotic translation initiation Factor 4B (elF4B) in influenza a virus replication[D]. Fuzhou: Fujian Agriculture and Forestry University, 2013.
    [43]
    Chen Biao, Chen Yuhai, Rai K R, et al. Deficiency of eIF4B increases mouse mortality and impairs antiviral immunity[J]. Frontiers in Immunology, 2021, 12: 723885. doi: 10.3389/fimmu.2021.723885
    [44]
    王国庆, 陈彪, 陈玉海, 等. 敲除eIF4B基因对小鼠胚胎肝脏细胞凋亡的影响[J]. 生物工程学报, 2022, 38(9): 3489−3500.

    Wang Guoqing, Chen Biao, Chen Yuhai, et al. Effect of eIF4B knockout on apoptosis of mouse fetal liver cells[J]. Chinese Journal of Biotechnology, 2022, 38(9): 3489−3500.
    [45]
    Wickenden J A, Watson C J. Key signalling nodes in mammary gland development and cancer. Signalling downstream of PI3 kinase in mammary epithelium: a play in 3 Akts[J]. Breast Cancer Research, 2010, 12(2): 202. doi: 10.1186/bcr2558
    [46]
    Hansen I A, Attardo G M, Roy S G, et al. Target of rapamycin-dependent activation of S6 kinase is a central step in the transduction of nutritional signals during egg development in a mosquito[J]. Journal of Biological Chemistry, 2005, 280(21): 20565−20572. doi: 10.1074/jbc.M500712200
    [47]
    陈露露, 皇甫宁博, 赵利康, 等. 龟纹瓢虫胰岛素信号通路AKTMAPKRPS6KB基因序列结构与时空表达模式分析[J]. 中国生物防治学报, 2023, 39(2): 280−288.

    Chen Lulu, Huangpu Ningbo, Zhao Likang, et al. Sequence structure and spatiotemporal expression analysis of AKT, MAPK and RPS6KB genes of insulin signaling pathway in Propylea japonica[J]. Chinese Journal of Biological Control, 2023, 39(2): 280−288.
    [48]
    宋佳玥. Bak调控AKT介导TNFα/CHX诱导细胞凋亡的机制研究[D]. 长春: 吉林大学, 2022.

    Song Jiayue. The mechanism of Bak regulating AKT-mediated TNFα/CHX-induced apoptosis[D]. Changchun: Jilin University, 2022.
    [49]
    Cecconi S, Mauro A, Cellini V, et al. The role of Akt signalling in the mammalian ovary[J] The International Journal of Developmental Biology, 2012, 56(10/12): 809−817.
    [50]
    Zhou Xuanyu, Cheng Shun, Zhao Chunpu, et al. Expression and functional analysis of the Akt gene from Daphnia pulex[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2020, 248-249: 110462. doi: 10.1016/j.cbpb.2020.110462
    [51]
    Kineman R D, del Rio-Moreno M, Sarmento-Cabral A. 40 YEARS of IGF1: Understanding the tissue-specific roles of IGF1/IGF1R in regulating metabolism using the Cre/loxP system[J]. Journal of Molecular Endocrinology, 2018, 61(1): T187−T198. doi: 10.1530/JME-18-0076
    [52]
    Lai Zhenyu, Wu Fei, Li Mei, et al. Tissue expression profile, polymorphism of IGF1 gene and its effect on body size traits of Dezhou donkey[J]. Gene, 2021, 766: 145118. doi: 10.1016/j.gene.2020.145118
    [53]
    Efstratiadis A. Genetics of mouse growth[J]. The International Journal of Developmental Biology, 1998, 42(7): 955−976.
    [54]
    Stratikopoulos E, Szabolcs M, Dragatsis I, et al. The hormonal action of IGF1 in postnatal mouse growth[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(49): 19378−19383.
    [55]
    Schlueter P J, Royer T, Farah M H, et al. Gene duplication and functional divergence of the zebrafish insulin-like growth factor 1 receptors[J]. The FASEB Journal, 2006, 20(8): 1230−1232. doi: 10.1096/fj.05-3882fje
    [56]
    常抗美, 吴剑锋. 厚壳贻贝人工繁殖技术的研究[J]. 南方水产, 2007, 3(3): 26−30.

    Chang Kangmei, Wu Jianfeng. Study on artificial propagation of mussel Mytilus coruscus[J]. South China Fisheries Science, 2007, 3(3): 26−30.
    [57]
    Yang Jinlong, Shen Peijing, Liang Xiao, et al. Larval settlement and metamorphosis of the mussel Mytilus coruscus in response to monospecific bacterial biofilms[J]. Biofouling, 2013, 29(3): 247−259.
    [58]
    García Z, Kumar A, Marques M, et al. Phosphoinositide 3-kinase controls early and late events in mammalian cell division[J]. The EMBO Journal, 2006, 25(4): 655−661. doi: 10.1038/sj.emboj.7600967
    [59]
    Viard P, Butcher A J, Halet G, et al. PI3K promotes voltage-dependent calcium channel trafficking to the plasma membrane[J]. Nature Neuroscience, 2004, 7(9): 939−946. doi: 10.1038/nn1300
    [60]
    Stephens L, Ellson C, Hawkins P. Roles of PI3Ks in leukocyte chemotaxis and phagocytosis[J]. Current Opinion in Cell Biology, 2002, 14(2): 203−213. doi: 10.1016/S0955-0674(02)00311-3
    [61]
    Liu Kui, Rajareddy S, Liu Lian, et al. Control of mammalian oocyte growth and early follicular development by the oocyte PI3 kinase pathway: New roles for an old timer[J]. Developmental Biology, 2006, 299(1): 1−11. doi: 10.1016/j.ydbio.2006.07.038
    [62]
    谢忠明. 海水经济贝类养殖技术[M]. 北京: 中国农业出版社, 2003.

    Xie Zhongming. Marine Economic Shellfish Aquaculture Technology[M]. Beijing: China Agriculture Press, 2003.
    [63]
    Zhu Linnan, Yang Tao, Li Longjie, et al. TSC1 controls macrophage polarization to prevent inflammatory disease[J]. Nature Communications, 2014, 5(1): 4696. doi: 10.1038/ncomms5696
    [64]
    顾忠旗, 倪梦麟, 范卫明. 厚壳贻贝胚胎发育观察[J]. 安徽农业科学, 2010, 38(32): 18213−18215. doi: 10.3969/j.issn.0517-6611.2010.32.089

    Gu Zhongqi, Ni Menglin, Fan Weiming. Observation on embryonic development of Mytilus coruscus[J]. Journal of Anhui Agricultural Sciences, 2010, 38(32): 18213−18215. doi: 10.3969/j.issn.0517-6611.2010.32.089
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article views (91) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return