Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 46 Issue 8
Sep.  2024
Turn off MathJax
Article Contents
Sun Shichang,Wang Zhiyong,Li Zhenjin, et al. An extraction method for sea ice based on improved DeepLabV3+ model:Taking the Arctic Greenland Sea as an example[J]. Haiyang Xuebao,2024, 46(8):131–142 doi: 10.12284/hyxb2024075
Citation: Sun Shichang,Wang Zhiyong,Li Zhenjin, et al. An extraction method for sea ice based on improved DeepLabV3+ model:Taking the Arctic Greenland Sea as an example[J]. Haiyang Xuebao,2024, 46(8):131–142 doi: 10.12284/hyxb2024075

An extraction method for sea ice based on improved DeepLabV3+ model:Taking the Arctic Greenland Sea as an example

doi: 10.12284/hyxb2024075
  • Received Date: 2023-12-12
  • Rev Recd Date: 2024-06-05
  • Available Online: 2024-08-09
  • Publish Date: 2024-09-26
  • Sea ice is an indicator of global climate change, and the change of Arctic sea ice is related to global warming and sea level rise. Aiming at the problems such as inaccuracy and slow speed of extracting details from sea ice by traditional semantic segmentation model, an improved DeepLabV3+ sea ice extraction method was constructed. Firstly, we replaced the Xception backbone network with MobileNetV2, which significantly reduces the network’s parameter count and save time while maintaining the accuracy of sea ice extraction. Secondly, we enhanced the ASPP module to DenseASPP, further expanding the receptive field during multi-scale feature extraction for sea ice, resulting in denser features. Lastly, we introduced a coordinate attention mechanism to strengthen the focus on both channel and spatial features, enhancing the extraction of fine edge details in sea ice. The Greenland Sea in the Arctic is selected as the experimental area, and 10 Sentinel-1A dual-polarization SAR images from the winter of 2020 to 2022 in the sea area are processed and labeled to form a data set for the experiment, we compared our method with classic models such as U-Net, PSPNet and DeepLabV3+. The results showed that our method achieved anmIoU of 88.46% and an mPA of 94.16%. Compared to the traditional DeepLabV3+, mIoU increased by 2.35%, mPA increased by 2.90%, and the parameter count and GFLOPs decreased 45.08 M and 106.01 G, respectively. Meanwhile, the training time and sea ice extraction time decreased by 68% and 30%, respectively. Compared to U-Net、PSPNet and other models, the optimal results are also obtained. Compared with other models, the new model constructed in this paper has a stronger learning ability about sea ice characteristics, can obtain more detailed information of sea ice and greatly saves time, and can provide technical support for the study of sea ice degradation monitoring under global warming environment.
  • loading
  • [1]
    Serreze M C, Holland M M, Stroeve J. Perspectives on the Arctic’s shrinking sea-ice cover[J]. Science, 2007, 315(5818): 1533−1536. doi: 10.1126/science.1139426
    [2]
    Trusel L D, Das S B, Osman M B, et al. Nonlinear rise in Greenland runoff in response to post-industrial arctic warming[J]. Nature, 2018, 564(7734): 104−108. doi: 10.1038/s41586-018-0752-4
    [3]
    葛梦滢, 高稳, 祝敏, 等. 基于SE-ConvLSTM的时空特征融合SAR图像海冰分类[J]. 遥感技术与应用, 2023, 38(6): 1306−1316.

    Ge Mengying, Gao Wen, Zhu Min, et al. Sea ice classification of SAR images based on SE-ConvLSTM spatial-temporal feature fusion[J]. Remote Sensing Technology and Application, 2023, 38(6): 1306−1316.
    [4]
    李小娜, 张杰, 戴永寿, 等. 灰度共生矩阵纹理特征对SAR海冰漂移监测的增强性能研究[J]. 海洋科学, 2018, 42(4): 9−17.

    Li Xiaona, Zhang Jie, Dai Yongshou, et al. Research on the enhanced performance of texture feature for sea ice drift monitoring based on gray level co-occurrence matrices[J]. Marine Sciences, 2018, 42(4): 9−17.
    [5]
    Wang Bin, Xia Linghui, Song Dongmei, et al. A two-round weight voting strategy-based ensemble learning method for sea ice classification of sentinel-1 imagery[J]. Remote Sensing, 2021, 13(19): 3945. doi: 10.3390/rs13193945
    [6]
    周颖, 匡定波, 巩彩兰, 等. 风云三号卫星MERSI影像提取北极海冰参数的方法[J]. 红外与毫米波学报, 2017, 36(1): 41−48,126−127.

    Zhou Ying, Kuang Dingbo, Gong Cailan, et al. A method to extract parameters of Arctic Sea ice from FY-3/MERSI imagery[J]. Journal of Infrared and Millimeter Waves, 2017, 36(1): 41−48,126−127.
    [7]
    臧金霞, 刘建强, 殷晓斌, 等. 基于最优特征集的HY-1C卫星海岸带成像仪影像海冰分类方法研究[J]. 海洋学报, 2022, 44(5): 35−46.

    Zang Jinxia, Liu Jianqiang, Yin Xiaobin, et al. Study on sea ice classification of HY-1C satellite coastal zone imager images based on the optimal feature set[J]. Haiyang Xuebao, 2022, 44(5): 35−46.
    [8]
    朱立先, 惠凤鸣, 张智伦, 等. 基于Sentinel-1A/B SAR数据的西北航道海冰分类研究[J]. 北京师范大学学报(自然科学版), 2019, 55(1): 66−76.

    Zhu Lixian, Hui Fengming, Zhang Zhilun, et al. Sea ice classification in northwest passage based on Sentinel-1A/B SAR data[J]. Journal of Beijing Normal University (Natural Science), 2019, 55(1): 66−76.
    [9]
    王志勇, 孙培蕾, 刘健. 一种联合多特征的极化SAR海冰类型提取方法[J]. 遥感信息, 2020, 35(4): 23−29.

    Wang Zhiyong, Sun Peilei, Liu Jian. A sea ice classification method of polarimetric SAR data by multi-feature combination[J]. Remote Sensing Information, 2020, 35(4): 23−29.
    [10]
    王志勇, 张梦悦, 于亚冉, 等. 一种融合纹理特征与NDVI的随机森林海冰精细分类方法[J]. 海洋学报, 2021, 43(10): 149−156.

    Wang Zhiyong, Zhang Mengyue, Yu Yaran, et al. A fine classification method for sea ice based on random forest combining texture feature and NDVI[J]. Haiyang Xuebao, 2021, 43(10): 149−156.
    [11]
    吴斌, 王志勇, 李兴, 等. CryoSat-2雷达高度计海冰波形优选特征分类[J]. 测绘通报, 2023(5): 164−169.

    Wu Bin, Wang Zhiyong, Li Xing, et al. CryoSat-2 radar altimeter sea ice waveform preferred feature classification[J]. Bulletin of Surveying and Mapping, 2023(5): 164−169.
    [12]
    Zakhvatkina N, Korosov A, Muckenhuber S, et al. Operational algorithm for ice–water classification on dual-polarized RADARSAT-2 images[J]. The Cryosphere, 2017, 11(1): 33−46. doi: 10.5194/tc-11-33-2017
    [13]
    Li Xiaoming, Sun Yan, Zhang Qiang. Extraction of sea ice cover by sentinel-1 SAR based on support vector machine with unsupervised generation of training data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(4): 3040−3053. doi: 10.1109/TGRS.2020.3007789
    [14]
    Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 3431−3440.
    [15]
    崔艳荣, 邹斌, 韩震, 等. 卷积神经网络在卫星遥感海冰图像分类中的应用探究——以渤海海冰为例[J]. 海洋学报, 2020, 42(9): 100−109.

    Cui Yanrong, Zou Bin, Han Zhen, et al. Application of convolutional neural networks in satellite remote sensing sea ice image classification: a case study of sea ice in the Bohai Sea[J]. Haiyang Xuebao, 2020, 42(9): 100−109.
    [16]
    郑付强, 匡定波, 胡勇, 等. 基于U-ASPP-Net的北极独立海冰精细识别方法[J]. 红外与毫米波学报, 2021, 40(6): 798−808.

    Zheng Fuqiang, Kuang Dingbo, Hu Yong, et al. Refined segmentation method based on U-ASPP-Net for Arctic independent sea ice[J]. Journal of Infrared and Millimeter Waves, 2021, 40(6): 798−808.
    [17]
    黄冬梅, 李明慧, 宋巍, 等. 卷积神经网络和深度置信网络在SAR影像冰水分类的性能评估[J]. 中国图象图形学报, 2018, 23(11): 1720−1732. doi: 10.11834/jig.180226

    Huang Dongmei, Li Minghui, Song Wei, et al. Performance of convolutional neural network and deep belief network in sea ice-water classification using SAR imagery[J]. Journal of Image and Graphics, 2018, 23(11): 1720−1732. doi: 10.11834/jig.180226
    [18]
    徐欢, 任沂斌. 基于混合损失U-Net的SAR图像渤海海冰检测研究[J]. 海洋学报, 2021, 43(6): 157−170.

    Xu Huan, Ren Yibin. Detecting sea ice of Bohai Sea using SAR images based on a hybrid loss U-Net model[J]. Haiyang Xuebao, 2021, 43(6): 157−170.
    [19]
    Sandler M, Howard A, Zhu Menglong, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE/CVFConference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4510−4520.
    [20]
    Huang Gao, Liu Zhuang, Van Der MaatenL, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2261−2269.
    [21]
    Yang Maoke, Yu Kun, Zhang Chi, et al. DenseASPP for semantic segmentation in street scenes[C]//Proceedings of the IEEE/CVFConference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 3684−3692.
    [22]
    Hu Jie, Shen Li, Sun Gang. Squeeze-and-excitation networks[C]//Proceedings of the IEEE/CVFConference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132−7141.
    [23]
    Woo S, Park J, Lee J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision. Munich: Springer, 2018: 3−19.
    [24]
    Hou Qibin, Zhou Daquan, Feng Jiashi. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 13708−13717.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article views (184) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return