Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 46 Issue 5
May  2024
Turn off MathJax
Article Contents
Zhu Ruosi,Song Guodong,Liu Sumei. Characteristics of spatial and temporal distribution of sediment oxygen consumption rate and environmental influence factors in the Yellow Sea and Bohai Sea[J]. Haiyang Xuebao,2024, 46(5):16–26 doi: 10.12284/hyxb2024074
Citation: Zhu Ruosi,Song Guodong,Liu Sumei. Characteristics of spatial and temporal distribution of sediment oxygen consumption rate and environmental influence factors in the Yellow Sea and Bohai Sea[J]. Haiyang Xuebao,2024, 46(5):16–26 doi: 10.12284/hyxb2024074

Characteristics of spatial and temporal distribution of sediment oxygen consumption rate and environmental influence factors in the Yellow Sea and Bohai Sea

doi: 10.12284/hyxb2024074
  • Received Date: 2024-01-23
  • Rev Recd Date: 2024-03-26
  • Available Online: 2024-05-14
  • Publish Date: 2024-05-01
  • Sediment oxygen consumption (SOC) is an important parameter of marine sediments and an important characterization parameter of the rate of organic carbon mineralization in seafloor sediments, and the study of SOC can help us to understand the carbon cycling process in the whole ocean. As one of the most important and active sites for organic carbon mineralization and burial, marginal seas have received widespread attention and research around the world, but there is still a lack of relevant attention to the Chinese marginal sea region with typical seasonal variations of the marine environment, especially the Yellow Sea and Bohai Sea. In this paper, the intact core incubation was used to study the SOC in the Yellow Sea and Bohai Sea in April, July and October 2022, and the results showed that the rates of SOC ranged from 7.11 mmol/(m2·d) to 17.33 mmol/(m2·d). There was no significant difference between the SOC of the Yellow Sea and the Bohai Sea in spring (ANOVA, p > 0.05), and the SOC of the Yellow Sea was lower than Bohai Sea in summer (ANOVA, p < 0.01) and autumn (ANOVA, p < 0.01); the SOC of the Yellow Sea was the largest in spring and the smallest in summer, and there was no significant difference between the SOC of the Bohai Sea in summer and autumn, which were significantly higher than that of spring (ANOVA, p < 0.05). Temperature and sediment Chl a concentration were the influencing factors. Meanwhile, the SOC was used to assess the rate of benthic organic carbon mineralization. When compared with the primary productivity, the results indicated that the contribution of benthic organic carbon mineralization to primary productivity in the Bohai Sea ranged from 42.8% to 74.5%, which was one of the key links in the carbon cycle of the Bohai Sea, while the benthic organic carbon mineralization in Yellow Sea plays a less significant role in the carbon cycle of the Yellow Sea carbon cycle than Bohai Sea. This paper systematically studied the SOC in the Yellow Sea and Bohai Sea and its spatial and temporal distribution characteristics, exploring the contribution of organic carbon mineralization to primary productivity in the Yellow Sea and Bohai Sea, which provided theoretical support for the understanding of organic carbon mineralization and burial in the Yellow Sea and Bohai Sea.
  • loading
  • [1]
    Caldeira K, Wickett M E. Anthropogenic carbon and ocean pH[J]. Nature, 2003, 425(6956): 365−365. doi: 10.1038/425365a
    [2]
    Orr J C, Fabry V J, Aumont O, et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms[J]. Nature, 2005, 437(7059): 681−686. doi: 10.1038/nature04095
    [3]
    Doney S C, Fabry V J, Feely R A, et al. Ocean acidification: the other CO2 problem[J]. Annual Review of Marine Science, 2009, 1: 169−192. doi: 10.1146/annurev.marine.010908.163834
    [4]
    Paulmier A, Ruiz-Pino D. Oxygen minimum zones (OMZs) in the modern ocean[J]. Progress in Oceanography, 2009, 80(3/4): 113−128.
    [5]
    Colijn F, de Jonge V N. Primary production of microphytobenthos in the Ems-Dollard Estuary[J]. Marine Ecology Progress Series, 1984, 14(2/3): 185−196.
    [6]
    Glud R N, Kühl M, Wenzhöfer F, et al. Benthic diatoms of a high Arctic fjord (Young Sound, NE Greenland): importance for ecosystem primary production[J]. Marine Ecology Progress Series, 2002, 238: 15−29. doi: 10.3354/meps238015
    [7]
    Dunne J P, Sarmiento J L, Gnanadesikan A. A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor[J]. Global Biogeochemical Cycles, 2007, 21(4): GB4006.
    [8]
    Menard H W, Smith S M. Hypsometry of ocean basin provinces[J]. Journal of Geophysical Research, 1966, 71(18): 4305−4325. doi: 10.1029/JZ071i018p04305
    [9]
    Jørgensen B B, Wenzhöfer F, Egger M, et al. Sediment oxygen consumption: role in the global marine carbon cycle[J]. Earth-Science Reviews, 2022, 228: 103987. doi: 10.1016/j.earscirev.2022.103987
    [10]
    Middelburg J J, Soetaert K, Herman P M J. Empirical relationships for use in global diagenetic models[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1997, 44(2): 327−344. doi: 10.1016/S0967-0637(96)00101-X
    [11]
    Glud R N. Oxygen dynamics of marine sediments[J]. Marine Biology Research, 2008, 4(4): 243−289. doi: 10.1080/17451000801888726
    [12]
    Wallmann K, Pinero E, Burwicz E, et al. The global inventory of methane hydrate in marine sediments: a theoretical approach[J]. Energies, 2012, 5(7): 2449−2498. doi: 10.3390/en5072449
    [13]
    Song Guodong, Liu Sumei, Zhu Zhuoyi, et al. Sediment oxygen consumption and benthic organic carbon mineralization on the continental shelves of the East China Sea and the Yellow Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2016, 124: 53−63. doi: 10.1016/j.dsr2.2015.04.012
    [14]
    Reimers C E, Özkan-Haller H T, Berg P, et al. Benthic oxygen consumption rates during hypoxic conditions on the Oregon continental shelf: evaluation of the eddy correlation method[J]. Journal of Geophysical Research: Oceans, 2012, 117(C2): C02021.
    [15]
    Laursen A E, Seitzinger S P. The role of denitrification in nitrogen removal and carbon mineralization in Mid-Atlantic Bight sediments[J]. Continental Shelf Research, 2002, 22(9): 1397−1416. doi: 10.1016/S0278-4343(02)00008-0
    [16]
    Boon A R, Duineveld G C A, Kok A. Benthic organic matter supply and metabolism at depositional and non-depositional areas in the North Sea[J]. Estuarine, Coastal and Shelf Science, 1999, 49(5): 747−761. doi: 10.1006/ecss.1999.0555
    [17]
    Lohse L, Epping E H G, Helder W, et al. Oxygen pore water profiles in continental shelf sediments of the North Sea: turbulent versus molecular diffusion[J]. Marine Ecology Progress Series, 1996, 145: 63−75. doi: 10.3354/meps145063
    [18]
    Devol A H, Codispoti L A, Christensen J P. Summer and winter denitrification rates in western Arctic shelf sediments[J]. Continental Shelf Research, 1997, 17(9): 1029−1050. doi: 10.1016/S0278-4343(97)00003-4
    [19]
    Wei Qinsheng, Yao Qingzhen, Wang Baodong, et al. Long-term variation of nutrients in the southern Yellow Sea[J]. Continental Shelf Research, 2015, 111: 184−196. doi: 10.1016/j.csr.2015.08.003
    [20]
    Wang Junjie, Yu Zhigang, Wei Qinsheng, et al. Long-term nutrient variations in the Bohai Sea over the past 40 years[J]. Journal of Geophysical Research: Oceans, 2019, 124(1): 703−722. doi: 10.1029/2018JC014765
    [21]
    张学雷, 朱明远, 陈尚, 等. 桑沟湾和胶州湾沉积物耗氧率研究[J]. 海洋科学进展, 2006, 24(1): 91−96. doi: 10.3969/j.issn.1671-6647.2006.01.012

    Zhang Xuelei, Zhu Mingyuan, Chen Shang, et al. Study on sediment oxygen consumption rate in the Sanggou Bay and Jiaozhou Bay[J]. Advances in Marine Science, 2006, 24(1): 91−96. doi: 10.3969/j.issn.1671-6647.2006.01.012
    [22]
    Rysgaard S, Glud R N, Risgaard-Petersen N, et al. Denitrification and anammox activity in Arctic marine sediments[J]. Limnology and Oceanography, 2004, 49(5): 1493−1502. doi: 10.4319/lo.2004.49.5.1493
    [23]
    Zhang Guosen, Zhang Jing, Liu Sumei. Characterization of nutrients in the atmospheric wet and dry deposition observed at the two monitoring sites over Yellow Sea and East China Sea[J]. Journal of Atmospheric Chemistry, 2007, 57(1): 41−57. doi: 10.1007/s10874-007-9060-3
    [24]
    李肖娜, 刘素美, 吕瑞华, 等. 东、黄海沉积物中叶绿素的分析[J]. 中国海洋大学学报, 2004, 34(4): 603−610.

    Li Xiaona, Liu Sumei, Lv Ruihua, et al. An analysis of chlorophyll in the sediments of East China Sea and Yellow Sea[J]. Periodical of Ocean University of China, 2004, 34(4): 603−610.
    [25]
    陈莹. 海洋环境变化对南海叶绿素a浓度的影响[D]. 湛江: 广东海洋大学, 2022.

    Cheng Ying. Effects of marine environmental changes on chlorophyll a in the South China Sea[D]. Zhanjiang: Guangdong Ocean University, 2022.
    [26]
    Lehrter J C, Beddick D L, Devereux R, et al. Sediment-water fluxes of dissolved inorganic carbon, O2, nutrients, and N2 from the hypoxic region of the Louisiana continental shelf[J]. Biogeochemistry, 2012, 109(1/3): 233−252.
    [27]
    Murrell M C, Lehrter J C. Sediment and lower water column oxygen consumption in the seasonally hypoxic region of the Louisiana continental shelf[J]. Estuaries and Coasts, 2011, 34(5): 912−924. doi: 10.1007/s12237-010-9351-9
    [28]
    Rowe G T, Kaegi M E C, Morse J W, et al. Sediment community metabolism associated with continental shelf hypoxia, northern Gulf of Mexico[J]. Estuaries, 2002, 25(6): 1097−1106. doi: 10.1007/BF02692207
    [29]
    Josiam R M, Stefan H G. Effect of flow velocity on sediment oxygen demand: comparison of theory and experiments[J]. JAWRA Journal of the American Water Resources Association, 1999, 35(2): 433−439. doi: 10.1111/j.1752-1688.1999.tb03601.x
    [30]
    O'Connor B L, Hondzo M. Dissolved oxygen transfer to sediments by sweep and eject motions in aquatic environments[J]. Limnology and Oceanography, 2008, 53(2): 566−578. doi: 10.4319/lo.2008.53.2.0566
    [31]
    Giles H, Pilditch C A, Nodder S D, et al. Benthic oxygen fluxes and sediment properties on the northeastern New Zealand continental shelf[J]. Continental Shelf Research, 2007, 27(18): 2373−2388. doi: 10.1016/j.csr.2007.06.007
    [32]
    Utley B C, Vellidis G, Lowrance R, et al. Factors affecting sediment oxygen demand dynamics in blackwater streams of Georgia’s coastal plain[J]. JAWRA Journal of the American Water Resources Association, 2008, 44(3): 742−753. doi: 10.1111/j.1752-1688.2008.00202.x
    [33]
    Zhang Yan, Li Jintao, Xu Xiao, et al. Temperature fluctuation promotes the thermal adaptation of soil microbial respiration[J]. Nature Ecology & Evolution, 2023, 7(2): 205−213.
    [34]
    Seiter K, Hensen C, Zabel M. Benthic carbon mineralization on a global scale[J]. Global Biogeochemical Cycles, 2005, 19(1): GB1010.
    [35]
    Canfield D E, Jørgensen B B, Fossing H, et al. Pathways of organic carbon oxidation in three continental margin sediments[J]. Marine Geology, 1993, 113(1/2): 27−40.
    [36]
    Canfield D E, Kristensen E, Thamdrup B. Aquatic geomicrobiology[J]. Advances in Marine Biology, 2005, 48: 1−599. doi: 10.1016/S0065-2881(05)48001-3
    [37]
    Anderson L A, Sarmiento J L. Redfield ratios of remineralization determined by nutrient data analysis[J]. Global Biogeochemical Cycles, 1994, 8(1): 65−80. doi: 10.1029/93GB03318
    [38]
    Middelburg J J, Duarte C M, Gattuso J P. Respiration in coastal benthic communities[M]//del Giorgio P, Williams P. Respiration in Aquatic Ecosystems. Oxford: Oxford University Press, 2005: 206−224.
    [39]
    Park M G, Yang S R, Shim J H, et al. Apparent dominance of regenerated primary production in the Yellow Sea[J]. Journal of the Korean Society of Oceanography, 2004, 39(1): 20−25.
    [40]
    Liu Sumei, Zhang Jing, Chen Shuzhu, et al. Inventory of nutrient compounds in the Yellow Sea[J]. Continental Shelf Research, 2003, 23(11/13): 1161−1174.
    [41]
    Shi Jinhui, Gao Huiwang, Zhang Jing, et al. Examination of causative link between a spring bloom and dry/wet deposition of Asian dust in the Yellow Sea, China[J] Journal of Geophysical Research: Atmospheres, 2012, 117(D17): D17304.
    [42]
    费尊乐, 毛兴华, 朱明运, 等. 渤海生产力研究—Ⅱ. 初级生产力及潜在渔获量的估算[J]. 海洋学报, 1988, 10(4): 481−489.

    Fei Zunle, Mao Xinghua, Zhu Mingyun, et al. Productivity studies in the Bohai Sea-Ⅱ Estimation of primary productivity and potential catch[J]. Haiyang Xuebao, 1988, 10(4): 481−489.
    [43]
    王俊, 李洪志. 渤海近岸叶绿素和初级生产力研究[J]. 海洋水产研究, 2002, 23(1): 23−28.

    Wang Jun, Li Hongzhi. Study on chlorophyll and primary production in inshore waters of the Bohai Sea[J]. Marine Fisheries Research, 2002, 23(1): 23−28.
    [44]
    吕培顶, 费尊乐, 毛兴华, 等. 渤海水域叶绿素a的分布及初级生产力的估算[J]. 海洋学报, 1984, 6(1): 90−98.

    Lv Peiding, Fei Zunle, Mao Xinghua, et al. Distribution of chlorophyll a and estimation of primary productivity in Bohai Sea waters[J]. Haiyang Xuebao, 1984, 6(1): 90−98.
    [45]
    Zhang Jing, Zhang Guosen, Liu Sumei. Dissolved silicate in coastal marine rainwaters: comparison between the Yellow Sea and the East China Sea on the impact and potential link with primary production[J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D16): D16304.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article views (120) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return