Citation: | Zhao Sufang,Liu Renju,Dong Chunming, et al. Microbial diversity of alkane- and plastic-degrading microbiome in offshore sediments of Ross Sea, Southern Ocean[J]. Haiyang Xuebao,2024, 46(5):81–92 doi: 10.12284/hyxb2024066 |
[1] |
Bargagli R, Rota E. Microplastic interactions and possible combined biological effects in antarctic marine ecosystems[J]. Animals, 2022, 13(1): 162. doi: 10.3390/ani13010162
|
[2] |
Suaria G, Perold V, Lee J R, et al. Floating macro- and microplastics around the Southern Ocean: results from the Antarctic Circumnavigation Expedition[J]. Environment International, 2020, 136: 105494. doi: 10.1016/j.envint.2020.105494
|
[3] |
Cincinelli A, Scopetani C, Chelazzi D, et al. Microplastic in the surface waters of the Ross Sea (Antarctica): occurrence, distribution and characterization by FTIR[J]. Chemosphere, 2017, 175: 391−400. doi: 10.1016/j.chemosphere.2017.02.024
|
[4] |
Munari C, Infantini V, Scoponi M, et al. Microplastics in the sediments of Terra Nova Bay (Ross Sea, Antarctica)[J]. Marine Pollution Bulletin, 2017, 122(1/2): 161−165.
|
[5] |
Cunningham E M, Ehlers S M, Dick J T A, et al. High abundances of microplastic pollution in deep-sea sediments: evidence from antarctica and the Southern Ocean[J]. Environmental Science & Technology, 2020, 54(21): 13661−13671.
|
[6] |
Vázquez S, Monien P, Pepino Minetti R, et al. Bacterial communities and chemical parameters in soils and coastal sediments in response to diesel spills at Carlini Station, Antarctica[J]. Science of the Total Environment, 2017, 605-606: 26−37. doi: 10.1016/j.scitotenv.2017.06.129
|
[7] |
Zakaria N N, Convey P, Gomez-Fuentes C, et al. Oil bioremediation in the marine environment of antarctica: a review and bibliometric keyword cluster analysis[J]. Microorganisms, 2021, 9(2): 419. doi: 10.3390/microorganisms9020419
|
[8] |
Curtosi A, Pelletier E, Vodopivez C L, et al. Polycyclic aromatic hydrocarbons in soil and surface marine sediment near Jubany Station (Antarctica). Role of permafrost as a low-permeability barrier[J]. Science of the Total Environment, 2007, 383(1/3): 193−204.
|
[9] |
Luigi M, Gaetano D M, Vivia B, et al. Biodegradative potential and characterization of psychrotolerant polychlorinated biphenyl-degrading marine bacteria isolated from a coastal station in the Terra Nova Bay (Ross Sea, Antarctica)[J]. Marine Pollution Bulletin, 2007, 54(11): 1754−1761. doi: 10.1016/j.marpolbul.2007.07.011
|
[10] |
Yakimov M M, Giuliano L, Bruni V, et al. Characterization of antarctic hydrocarbon-degrading bacteria capable of producing bioemulsifiers[J]. The New Microbiologica, 1999, 22(3): 249−256.
|
[11] |
Pepi M, Cesàro A, Liut G, et al. An antarctic psychrotrophic bacterium Halomonas sp. ANT-3b, growing on n-hexadecane, produces a new emulsyfying glycolipid[J]. FEMS Microbiology Ecology, 2005, 53(1): 157−166. doi: 10.1016/j.femsec.2004.09.013
|
[12] |
Lo Giudice A, Michaud L, De Pascale D, et al. Lipolytic activity of Antarctic cold-adapted marine bacteria (Terra Nova Bay, Ross Sea)[J]. Journal of Applied Microbiology, 2006, 101(5): 1039−1048. doi: 10.1111/j.1365-2672.2006.03006.x
|
[13] |
Yakimov M M, Gentile G, Bruni V, et al. Crude oil-induced structural shift of coastal bacterial communities of rod bay (Terra Nova Bay, Ross Sea, Antarctica) and characterization of cultured cold-adapted hydrocarbonoclastic bacteria[J]. FEMS Microbiology Ecology, 2004, 49(3): 419−432. doi: 10.1016/j.femsec.2004.04.018
|
[14] |
Sfriso A A, Tomio Y, Rosso B, et al. Microplastic accumulation in benthic invertebrates in Terra Nova Bay (Ross Sea, Antarctica)[J]. Environment International, 2020, 137: 105587. doi: 10.1016/j.envint.2020.105587
|
[15] |
Zadjelovic V, Erni-Cassola G, Obrador-Viel T, et al. A mechanistic understanding of polyethylene biodegradation by the marine bacterium Alcanivorax[J]. Journal of Hazardous Materials, 2022, 436: 129278. doi: 10.1016/j.jhazmat.2022.129278
|
[16] |
Delacuvellerie A, Cyriaque V, Gobert S, et al. The plastisphere in marine ecosystem hosts potential specific microbial degraders including Alcanivorax borkumensis as a key player for the low-density polyethylene degradation[J]. Journal of Hazardous Materials, 2019, 380: 120899. doi: 10.1016/j.jhazmat.2019.120899
|
[17] |
Moog D, Schmitt J, Senger J, et al. Using a marine microalga as a chassis for polyethylene terephthalate (PET) degradation[J]. Microbial Cell Factories, 2019, 18(1): 171. doi: 10.1186/s12934-019-1220-z
|
[18] |
Tournier V, Topham C M, Gilles A, et al. An engineered PET depolymerase to break down and recycle plastic bottles[J]. Nature, 2020, 580(7802): 216−219. doi: 10.1038/s41586-020-2149-4
|
[19] |
Yoshida S, Hiraga K, Takehana T, et al. A bacterium that degrades and assimilates poly(ethylene terephthalate)[J]. Science, 2016, 351(6278): 1196−1199. doi: 10.1126/science.aad6359
|
[20] |
Blázquez-Sánchez P, Engelberger F, Cifuentes-Anticevic J, et al. Antarctic polyester hydrolases degrade aliphatic and aromatic polyesters at moderate temperatures[J]. Applied and Environmental Microbiology, 2022, 88(1): e0184221. doi: 10.1128/AEM.01842-21
|
[21] |
Yakimov M M, Bargiela R, Golyshin P N. Calm and Frenzy: Marine obligate hydrocarbonoclastic bacteria sustain ocean wellness[J]. Current Opinion in Biotechnology, 2022, 73: 337−345. doi: 10.1016/j.copbio.2021.09.015
|
[22] |
Denaro R, Aulenta F, Crisafi F, et al. Marine hydrocarbon-degrading bacteria breakdown poly(ethylene terephthalate) (PET)[J]. Science of the Total Environment, 2020, 749: 141608. doi: 10.1016/j.scitotenv.2020.141608
|
[23] |
Roberts C, Edwards S, Vague M, et al. Environmental consortium containing Pseudomonas and Bacillus species synergistically degrades polyethylene terephthalate plastic[J]. mSphere, 2020, 5(6): e01151−20.
|
[24] |
Zhao Sufang, Liu Renju, Wang Juan, et al. Biodegradation of polyethylene terephthalate (PET) by diverse marine bacteria in deep-sea sediments[J]. Environmental Microbiology, 2023, 25(12): 2719−2731. doi: 10.1111/1462-2920.16460
|
[25] |
Hassanshahian M, Emtiazi G, Cappello S. Isolation and characterization of crude-oil-degrading bacteria from the Persian Gulf and the Caspian Sea[J]. Marine Pollution Bulletin, 2012, 64(1): 7−12. doi: 10.1016/j.marpolbul.2011.11.006
|
[26] |
叶静, 戴文芳, 刘圣, 等. 熊本牡蛎、葡萄牙牡蛎和长牡蛎组织菌群构成及功能的比较分析[J]. 海洋学报, 2022, 44(8): 66−77.
Ye Jing, Dai Wenfang, Liu Sheng, et al. Comparison of the composition and functional potentials of bacterial communities in different tissues from Crassostrea sikamea, Crassostrea angulata and Crassostrea gigas[J]. Haiyang Xuebao, 2022, 44(8): 66−77.
|
[27] |
Hassanshahian M, Boroujeni N A. Enrichment and identification of naphthalene-degrading bacteria from the Persian Gulf[J]. Marine Pollution Bulletin, 2016, 107(1): 59−65. doi: 10.1016/j.marpolbul.2016.04.020
|
[28] |
Gao Rongrong, Sun Chaomin. A marine bacterial community capable of degrading poly(ethylene terephthalate) and polyethylene[J]. Journal of Hazardous Materials, 2021, 416: 125928. doi: 10.1016/j.jhazmat.2021.125928
|
[29] |
Cole M, Lindeque P, Halsband C, et al. Microplastics as contaminants in the marine environment: a review[J]. Marine Pollution Bulletin, 2011, 62(12): 2588−2597. doi: 10.1016/j.marpolbul.2011.09.025
|
[30] |
Vergeynst L, Wegeberg S, Aamand J, et al. Biodegradation of marine oil spills in the Arctic with a Greenland perspective[J]. Science of the Total Environment, 2018, 626: 1243−1258. doi: 10.1016/j.scitotenv.2018.01.173
|
[31] |
Tapilatu Y, Acquaviva M, Guigue C, et al. Isolation of alkane-degrading bacteria from deep-sea Mediterranean sediments[J]. Letters in Applied Microbiology, 2010, 50(2): 234−236. doi: 10.1111/j.1472-765X.2009.02766.x
|
[32] |
王世杰, 王翔, 卢桂兰, 等. 低温微生物修复石油烃类污染土壤研究进展[J]. 应用生态学报, 2011, 22(4): 1082−1088.
Wang Shijie, Wang Xiang, Lu Guilan, et al. Bioremediation of petroleum hydrocarbon-contaminated soils by cold-adapted microorganisms: research advance[J]. Chinese Journal of Applied Ecology, 2011, 22(4): 1082−1088.
|
[33] |
Cappello S, Corsi I, Patania S, et al. Characterization of five psychrotolerant Alcanivorax spp. strains isolated from antarctica[J]. Microorganisms, 2022, 11(1): 58. doi: 10.3390/microorganisms11010058
|
[34] |
Koh J, Bairoliya S, Salta M, et al. Sediment-driven plastisphere community assembly on plastic debris in tropical coastal and marine environments[J]. Environment International, 2023, 179: 108153. doi: 10.1016/j.envint.2023.108153
|
[35] |
Khandare S D, Chaudhary D R, Jha B. Marine bacterial biodegradation of low-density polyethylene (LDPE) plastic[J]. Biodegradation, 2021, 32(2): 127−143. doi: 10.1007/s10532-021-09927-0
|
[36] |
Bitalac J M S, Lantican N B, Gomez N C F, et al. Attachment of potential cultivable primo-colonizing bacteria and its implications on the fate of low-density polyethylene (LDPE) plastics in the marine environment[J]. Journal of Hazardous Materials, 2023, 451: 131124. doi: 10.1016/j.jhazmat.2023.131124
|
[37] |
Wilkes R A, Aristilde L. Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp. : Capabilities and challenges[J]. Journal of Applied Microbiology, 2017, 123(3): 582−593. doi: 10.1111/jam.13472
|
[38] |
Bacha A U R, Nabi I, Zaheer M, et al. Biodegradation of macro- and micro-plastics in environment: A review on mechanism, toxicity, and future perspectives[J]. Science of the Total Environment, 2023, 858: 160108. doi: 10.1016/j.scitotenv.2022.160108
|
[39] |
Lv Shiwei, Cui Kexin, Zhao Sufang, et al. Continuous generation and release of microplastics and nanoplastics from polystyrene by plastic-degrading marine bacteria[J]. Journal of Hazardous Materials, 2024, 465: 133339. doi: 10.1016/j.jhazmat.2023.133339
|
[40] |
Liu R, Xu H, Zhao S, et al. Polyethylene terephthalate (PET)-degrading bacteria in the pelagic deep-sea sediments of the Pacific Ocean[J]. Environ Pollut, 2024, 352:124131.
|
[41] |
Auta H S, Emenike C U, Jayanthi B, et al. Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment[J]. Marine Pollution Bulletin, 2018, 127: 15−21.
|
[42] |
Guo Wenbin, Duan Jingjing, Shi Zhengguang, et al. Biodegradation of PET by the membrane-anchored PET esterase from the marine bacterium Rhodococcus pyridinivorans P23[J]. Communications Biology, 2023, 6(1): 1090.
|
[43] |
Yan Zhengfei, Wang Lei, Xia Wei, et al. Synergistic biodegradation of poly(ethylene terephthalate) using Microbacterium oleivorans and Thermobifida fusca cutinase[J]. Applied Microbiology and Biotechnology, 2021, 105(11): 4551−4560.
|
[44] |
Habib S, Iruthayam A, Abd Shukor M Y, et al. Biodeterioration of untreated polypropylene microplastic particles by antarctic bacteria[J]. Polymers, 2020, 12(11): 2616.
|
[45] |
Won S J, Yim J H, Kim H K. Functional production, characterization, and immobilization of a cold-adapted cutinase from Antarctic Rhodococcus sp.[J]. Protein Expression and Purification, 2022, 195−196: 106077.
|
[46] |
Zhang Ailin, Hou Yanhua, Wang Quanfu, et al. Characteristics and polyethylene biodegradation function of a novel coldadapted bacterial laccase from Antarctic sea ice psychrophile Psychrobacter sp. NJ228[J]. Journal of Hazardous Materials, 2022, 439: 129656.
|