Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 46 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
Lu Yang,Zhao Haibo,Zhao Jiawei, et al. Simulation error diagnosis of the seasonal evolution of sea ice thickness during MOSAiC in-situ observation[J]. Haiyang Xuebao,2024, 46(6):26–39 doi: 10.12284/hyxb2024065
Citation: Lu Yang,Zhao Haibo,Zhao Jiawei, et al. Simulation error diagnosis of the seasonal evolution of sea ice thickness during MOSAiC in-situ observation[J]. Haiyang Xuebao,2024, 46(6):26–39 doi: 10.12284/hyxb2024065

Simulation error diagnosis of the seasonal evolution of sea ice thickness during MOSAiC in-situ observation

doi: 10.12284/hyxb2024065
  • Received Date: 2024-02-06
  • Rev Recd Date: 2024-05-17
  • Available Online: 2024-07-12
  • Publish Date: 2024-06-01
  • The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) was conducted from October 2019 to September 2020, yielding complete observations of atmosphere, ocean, sea ice thickness (SIT), and snow thickness. These observations provide new opportunities for the development of sea ice models. In this study, the seasonal evolution of SIT during MOSAiC was simulated using the ICEPACK sea ice model and atmospheric and oceanic forcing observations from two periods without missing data (from November 1, 2019 to May 7, 2020; from June 26 to July 27, 2020). The simulation was compared with SIT observation and the reasons for SIT simulation errors were diagnosed. The results show that, in the winter and spring seasons, the model can reproduce the increase in SIT, but overestimates the transition from submerged snow to sea ice and its contribution to sea ice mass balance. This causes the overestimation of SIT in spring. During the summer season, the combination of two thermodynamic schemes and three melt pond schemes indicates that the model overestimates the sea ice surface melting, resulting in thinner SIT at the end of simulation period. Our research demonstrates that the MOSAiC atmospheric and oceanic observation with all variables needed to force ICEPACK can be used to diagnose current sea ice models and very useful for their future improvements.
  • loading
  • [1]
    WMO. WMO Sea-Ice Nomenclature[R]. Geneva: WMO, 2014.
    [2]
    Comiso J C, Parkinson C L, Gersten R, et al. Accelerated decline in the Arctic sea ice cover[J]. Geophysical Research Letters, 2008, 35(1): L01703.
    [3]
    Kwok R, Rothrock D A. Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008[J]. Geophysical Research Letters, 2009, 36(15): L15501.
    [4]
    Maslanik J A, Fowler C, Stroeve J, et al. A younger, thinner Arctic ice cover: increased potential for rapid, extensive sea-ice loss[J]. Geophysical Research Letters, 2007, 34(24): L24501.
    [5]
    Parkinson C L, Digirolamo N E. Sea ice extents continue to set new records: Arctic, Antarctic, and global results[J]. Remote Sensing of Environment, 2021, 267: 112753. doi: 10.1016/j.rse.2021.112753
    [6]
    Stroeve J C, Markus T, Boisvert L, et al. Changes in Arctic melt season and implications for sea ice loss[J]. Geophysical Research Letters, 2014, 41(4): 1216−1225. doi: 10.1002/2013GL058951
    [7]
    Kim Y H, Min S K, Gillett N P, et al. Observationally-constrained projections of an ice-free Arctic even under a low emission scenario[J]. Nature Communications, 2023, 14(1): 3139. doi: 10.1038/s41467-023-38511-8
    [8]
    Walter N M, National S, Julienne S. An updated assessment of the changing arctic sea ice cover[J]. Oceanography, 2022, 35(3/4): 10−19.
    [9]
    Lindsay R, Schweiger A. Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations[J]. The Cryosphere, 2015, 9(1): 269−283. doi: 10.5194/tc-9-269-2015
    [10]
    Kwok R. Arctic sea ice thickness, volume, and multiyear ice coverage: losses and coupled variability (1958–2018)[J]. Environmental Research Letters, 2018, 13(10): 105005. doi: 10.1088/1748-9326/aae3ec
    [11]
    Hibler W D. Modeling a variable thickness sea ice cover[J]. Monthly Weather Review, 1980, 108(12): 1943−1973. doi: 10.1175/1520-0493(1980)108<1943:MAVTSI>2.0.CO;2
    [12]
    邱博, 张录军, 储敏, 等. 气候系统模式对于北极海冰模拟分析[J]. 极地研究, 2015, 27(1): 47−55.

    Qiu Bo, Zhang Lujun, Chu Min, et al. Performance analysis of Arctic sea ice simulation in climate system models[J]. Chinese Journal of Polar Research, 2015, 27(1): 47−55.
    [13]
    朱清照, 闻新宇. 中国CMIP5模式对未来北极海冰的模拟偏差[J]. 气候变化研究进展, 2016, 12(4): 276−285.

    Zhu Qingzhao, Wen Xinyu. Performance of Chinese climate models in simulating Arctic sea-ice in CMIP5 experiments[J]. Climate Change Research, 2016, 12(4): 276−285.
    [14]
    Liu Jiping, Song Mirong, Horton R M, et al. Reducing spread in climate model projections of a September ice-free Arctic[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(31): 12571−12576.
    [15]
    Zhang Jinlun, Rothrock D A. Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates[J]. Monthly Weather Review, 2003, 131(5): 845−861. doi: 10.1175/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2
    [16]
    Chen Lanying, Wu Renhao, Shu Qi, et al. The Arctic sea ice thickness change in CMIP6’s historical simulations[J]. Advances in Atmospheric Sciences, 2023, 40(12): 2331−2343. doi: 10.1007/s00376-022-1460-4
    [17]
    王梓琦. 我国CMIP6模式北极海冰厚度比较及误差来源分析[D]. 南京: 南京信息工程大学, 2023.

    Wang Ziqi. Comparison and error source analysis of Arctic sea ice thickness in China’s CMIP6 models[D]. Nanjing: Nanjing University of Information Science and Technology, 2023.
    [18]
    Hunke E, Allard R, Bailey D A, et al. CICE-Consortium/CICE: CICE version 6.0. 0[EB/OL]. https://doi.org/10.5281/zenodo.1900639,2018-10-04/2024-02-04.
    [19]
    Long Mengyuan, Zhang Lujun, Hu Siyu, et al. Multi-aspect assessment of CMIP6 models for Arctic sea ice simulation[J]. Journal of Climate, 2021, 34(4): 1515−1529. doi: 10.1175/JCLI-D-20-0522.1
    [20]
    Xu Mengliu, Li Junde. Assessment of sea ice thickness simulations in the CMIP6 models with CICE components[J]. Frontiers in Marine Science, 2023, 10: 1223772. doi: 10.3389/fmars.2023.1223772
    [21]
    Hunke E, Allard R, Bailey D, et al. CICE Consortium/Icepack version 1.1.0[EB/OL]. http://doi.org/10.5281/zenodo.1891650,2018-10-03/2024-02-04.
    [22]
    Gu Fengguan, Yang Qinghua, Kauker F, et al. The sensitivity of landfast sea ice to atmospheric forcing in single-column model simulations: a case study at Zhongshan Station, Antarctica[J]. The Cryosphere, 2022, 16(5): 1873−1887. doi: 10.5194/tc-16-1873-2022
    [23]
    曹淑涛, 苏洁, 李涛, 等. 基于Icepack海冰柱模式的融池反照率模拟研究[J]. 海洋学报, 2021, 43(7): 63−74.

    Cao Shutao, Su Jie, Li Tao, et al. Study on melt pond albedo based on Icepack sea ice column model[J]. Haiyang Xuebao, 2021, 43(7): 63−74.
    [24]
    Plante M, Lemieux J F, Tremblay L B, et al. Using icepack to reproduce ice mass balance buoy observations in landfast ice: improvements from the mushy-layer thermodynamics[J]. The Cryosphere, 2024, 18(4): 1685−1708. doi: 10.5194/tc-18-1685-2024
    [25]
    肖峰, 张胜凯, 李佳星, 等. 基于CryoSat-2卫星测高数据的北极海冰厚度变化研究[J]. 中国科学: 地球科学, 2021, 51(7): 1059-1069.

    Xiao Feng, Zhang Shengkai, Li Jiaxing, et al. Arctic sea ice thickness variations from CryoSat-2 satellite altimetry data[J]. Science China Earth Sciences, 2021, 64(7): 1080-1089.
    [26]
    Shupe M D, Rex M, Blomquist B, et al. Overview of the MOSAiC expedition: atmosphere[J]. Elementa: Science of the Anthropocene, 2022, 10(1): 00060. doi: 10.1525/elementa.2021.00060
    [27]
    Nicolaus M, Perovich D K, Spreen G, et al. Overview of the MOSAiC expedition: snow and sea ice[J]. Elementa: Science of the Anthropocene, 2022, 10(1): 000046. doi: 10.1525/elementa.2021.000046
    [28]
    Rabe B, Heuzé C, Regnery J, et al. Overview of the MOSAiC expedition: physical oceanography[J]. Elementa: Science of the Anthropocene, 2022, 10(1): 00062. doi: 10.1525/elementa.2021.00062
    [29]
    雷瑞波. 我国参与MOSAiC气候多学科漂流冰站计划的概况[J]. 极地研究, 2020, 32(4): 596−600.

    Lei Ruibo. Contributions to the MOSAIC from China[J]. Chinese Journal of Polar Research, 2020, 32(4): 596−600.
    [30]
    Wagner D N, Shupe M D, Cox C, et al. Snowfall and snow accumulation during the MOSAiC winter and spring seasons[J]. The Cryosphere, 2022, 16(6): 2373−2402. doi: 10.5194/tc-16-2373-2022
    [31]
    Rinke A, Cassano J J, Cassano E N, et al. Meteorological conditions during the MOSAiC expedition: normal or anomalous?[J]. Elementa: Science of the Anthropocene, 2021, 9(1): 00023. doi: 10.1525/elementa.2021.00023
    [32]
    Hoppmann M, Kuznetsov I, Fang Y C, et al. Mesoscale observations of temperature and salinity in the Arctic Transpolar Drift: a high-resolution dataset from the MOSAiC Distributed Network[J]. Earth System Science Data, 2022, 14(11): 4901−4921. doi: 10.5194/essd-14-4901-2022
    [33]
    Jackson K, Wilkinson J, Maksym T, et al. A novel and low-cost sea ice mass balance buoy[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(11): 2676−2688. doi: 10.1175/JTECH-D-13-00058.1
    [34]
    赵杰臣, 杨清华, 程斌, 等. 基于温度链浮标获取南极普里兹湾积雪和固定冰厚度的研究[J]. 海洋学报, 2017, 39(11): 115−127.

    Zhao Jiechen, Yang Qinghua, Cheng Bin, et al. Snow and land-fast sea ice thickness derived from thermistor chain buoy in the Prydz Bay, Antarctic[J]. Haiyang Xuebao, 2017, 39(11): 115−127.
    [35]
    郝光华, 杨清华, 赵杰臣, 等. 2016年南极中山站固定冰冰厚观测分析[J]. 海洋学报, 2019, 41(9): 26−39.

    Hao Guanghua, Yang Qinghua, Zhao Jiechen, et al. Observation and analysis of landfast ice arounding Zhongshan Station, Antarctic in 2016[J]. Haiyang Xuebao, 2019, 41(9): 26−39.
    [36]
    Lei Ruibo, Cheng B, Hoppmann M, et al. Seasonality and timing of sea ice mass balance and heat fluxes in the Arctic transpolar drift during 2019–2020[J]. Elementa: Science of the Anthropocene, 2022, 10(1): 000089. doi: 10.1525/elementa.2021.000089
    [37]
    Webster M A, Holland M, Wright N C, et al. Spatiotemporal evolution of melt ponds on Arctic sea ice: MOSAiC observations and model results[J]. Elementa: Science of the Anthropocene, 2022, 10(1): 000072. doi: 10.1525/elementa.2021.000072
    [38]
    Niehaus H, Spreen G, Birnbaum G, et al. Sea ice melt pond fraction derived from Sentinel-2 data: along the MOSAiC drift and Arctic-wide[J]. Geophysical Research Letters, 2023, 50(5): e2022GL102102. doi: 10.1029/2022GL102102
    [39]
    Oggier M, Salganik E, Whitmore L, et al. First-year sea-ice salinity, temperature, density, oxygen and hydrogen isotope composition from the main coring site (MCS-FYI) during MOSAiC legs 1 to 4 in 2019/2020[EB/OL]. https://doi.pangaea.de/10.1594/PANGAEA.956732,2024-02-04.
    [40]
    Thorndike A S, Rothrock D A, Maykut G A, et al. The thickness distribution of sea ice[J]. Journal of Geophysical Research, 1975, 80(33): 4501−4513. doi: 10.1029/JC080i033p04501
    [41]
    Semtner Jr A J. A model for the thermodynamic growth of sea ice in numerical investigations of climate[J]. Journal of Physical Oceanography, 1976, 6(3): 379−389. doi: 10.1175/1520-0485(1976)006<0379:AMFTTG>2.0.CO;2
    [42]
    Bitz C M, Lipscomb W H. An energy-conserving thermodynamic model of sea ice[J]. Journal of Geophysical Research: Oceans, 1999, 104(C7): 15669−15677. doi: 10.1029/1999JC900100
    [43]
    Turner A K, Hunke E C, Bitz C M. Two modes of sea-ice gravity drainage: a parameterization for large-scale modeling[J]. Journal of Geophysical Research: Oceans, 2013, 118(5): 2279−2294. doi: 10.1002/jgrc.20171
    [44]
    Holland M M, Bailey D A, Briegleb B P, et al. Improved sea ice shortwave radiation physics in CCSM4: the impact of melt ponds and aerosols on Arctic sea ice[J]. Journal of Climate, 2012, 25(5): 1413−1430. doi: 10.1175/JCLI-D-11-00078.1
    [45]
    Flocco D, Feltham D L. A continuum model of melt pond evolution on Arctic sea ice[J]. Journal of Geophysical Research: Oceans, 2007, 112(C8): C08016.
    [46]
    Flocco D, Feltham D L, Turner A K. Incorporation of a physically based melt pond scheme into the sea ice component of a climate model[J]. Journal of Geophysical Research: Oceans, 2010, 115(C8): C08012.
    [47]
    Flocco D, Schroeder D, Feltham D L, et al. Impact of melt ponds on Arctic sea ice simulations from 1990 to 2007[J]. Journal of Geophysical Research: Oceans, 2012, 117(C9): C09032.
    [48]
    Flocco D, Feltham D L, Bailey E, et al. The refreezing of melt ponds on Arctic sea ice[J]. Journal of Geophysical Research: Oceans, 2015, 120(2): 647−659. doi: 10.1002/2014JC010140
    [49]
    Hunke E C, Hebert D A, Lecomte O. Level-ice melt ponds in the Los Alamos sea ice model, CICE[J]. Ocean Modelling, 2013, 71: 26−42. doi: 10.1016/j.ocemod.2012.11.008
    [50]
    Huwald H, Tremblay L B, Blatter H. Reconciling different observational data sets from Surface Heat Budget of the Arctic Ocean (SHEBA) for model validation purposes[J]. Journal of Geophysical Research: Oceans, 2005, 110(C5): C05009.
    [51]
    张慧敏, 金梅兵, 祁第. 常数和变化积雪密度方案诊断计算积雪厚度的敏感性研究[J]. 海洋学报, 2022, 44(7): 47−57.

    Zhang Huimin, Jin Meibing, Qi Di. Sensitivity study of constant and variable snow density schemes in diagnosing and calculating snow depth[J]. Haiyang Xuebao, 2022, 44(7): 47−57.
    [52]
    尹豪, 苏洁, Cheng Bin. 积雪密度演变对北极积雪深度模拟的影响[J]. 海洋学报, 2021, 43(7): 75−89.

    Yin Hao, Su Jie, Cheng Bin. The effect of snow density evolution on modelled snow depth in the Arctic[J]. Haiyang Xuebao, 2021, 43(7): 75−89.
    [53]
    Turner A K, Hunke E C. Impacts of a mushy-layer thermodynamic approach in global sea-ice simulations using the CICE sea-ice model[J]. Journal of Geophysical Research: Oceans, 2015, 120(2): 1253−1275. doi: 10.1002/2014JC010358
    [54]
    Brandt R E, Warren S G, Worby A P, et al. Surface albedo of the Antarctic sea ice zone[J]. Journal of Climate, 2005, 18(17): 3606−3622. doi: 10.1175/JCLI3489.1
    [55]
    杨清华, 刘骥平, 孙启振, 等. 2010年春季南极固定冰反照率变化特征及其影响因子[J]. 地球物理学报, 2013, 56(7): 2177−2184. doi: 10.6038/cjg20130705

    Yang Qinghua, Liu Jiping, Sun Qizhen, et al. Surface albedo variation and its influencing factors over costal fast ice around Zhongshan station, Antarcticain austral spring of 2010[J]. Chinese Journal of Geophysics, 2013, 56(7): 2177−2184. doi: 10.6038/cjg20130705
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(4)

    Article views (131) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return