Citation: | Lou Hongcheng,Zhang Yongchui,Jiang Deliang, et al. Investigation methods of submesoscale fronts at the edge of mesoscale eddies in the ocean[J]. Haiyang Xuebao,2024, 46(6):1–13 doi: 10.12284/hyxb2024063 |
[1] |
Verma V, Sarkar S. Lagrangian three-dimensional transport and dispersion by submesoscale currents at an upper-ocean front[J]. Ocean Modelling, 2021, 165: 101844. doi: 10.1016/j.ocemod.2021.101844
|
[2] |
Ito D, Suga T, Kouketsu S, et al. Spatiotemporal evolution of submesoscale filaments at the periphery of an anticyclonic mesoscale eddy north of the Kuroshio Extension[J]. Journal of Oceanography, 2021, 77(5): 763−780. doi: 10.1007/s10872-021-00607-4
|
[3] |
Kuroda H, Toya Y. High-resolution sea surface temperatures derived from Landsat 8: a study of submesoscale frontal structures on the pacific shelf off the Hokkaido coast, Japan[J]. Remote Sensing, 2020, 12(20): 3326. doi: 10.3390/rs12203326
|
[4] |
McWilliams J C. Submesoscale currents in the ocean[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472(2189): 20160117. doi: 10.1098/rspa.2016.0117
|
[5] |
Mahadevan A, Tandon A. An analysis of mechanisms for submesoscale vertical motion at ocean fronts[J]. Ocean Modelling, 2006, 14(3/4): 241−256.
|
[6] |
Siegelman L, O’Toole M, Flexas M, et al. Submesoscale ocean fronts act as biological hotspot for southern elephant seal[J]. Scientific Reports, 2019, 9(1): 5588. doi: 10.1038/s41598-019-42117-w
|
[7] |
Bendtsen J, Sørensen L L, Daugbjerg N, et al. Phytoplankton diversity explained by connectivity across a mesoscale frontal system in the open ocean[J]. Scientific Reports, 2023, 13(1): 12117. doi: 10.1038/s41598-023-38831-1
|
[8] |
Siegelman L, Klein P, Rivière P, et al. Enhanced upward heat transport at deep submesoscale ocean fronts[J]. Nature Geoscience, 2020, 13(1): 50−55. doi: 10.1038/s41561-019-0489-1
|
[9] |
Thomas L N, Tandon A, Mahadevan A. Submesoscale processes and dynamics[M]//Hecht M W, Hasumi H. Ocean Modeling in an Eddying Regime. Washington: American Geophysical Union, 2008: 17-38.
|
[10] |
张旭, 经志友, 郑瑞玺, 等. 黑潮延伸体海域典型涡旋的次中尺度特征分析[J]. 热带海洋学报, 2021, 40(6): 31−40. doi: 10.11978/2020152
Zhang Xu, Jing Zhiyou, Zheng Ruixi, et al. Submesoscale characteristics of a typical anticyclonic mesoscale eddy in Kuroshio Extension[J]. Journal of Tropical Oceanography, 2021, 40(6): 31−40. doi: 10.11978/2020152
|
[11] |
Jing Zhao, Wang Shengpeng, Wu Lixin, et al. Maintenance of mid-latitude oceanic fronts by mesoscale eddies[J]. Science Advances, 2020, 6(31): eaba7880. doi: 10.1126/sciadv.aba7880
|
[12] |
张永垂, 楼鸿程, 姜德良, 等. 海洋次中尺度现象调查概述[J]. 海洋测绘, 2024, 44(3): 7−11, 17.
Zhang Yongchui, Lou Hongcheng, Jiang Deliang, et al. Overview of oceanic submesoscales survey[J]. Hydrographic Surveying and Charting, 2024, 44(3): 7−11, 17.
|
[13] |
Zhu Ruichen, Yang Haiyuan, Li Mingkui, et al. Observations reveal vertical transport induced by submesoscale front[J]. Scientific Reports, 2024, 14(1): 4407. doi: 10.1038/s41598-024-54940-x
|
[14] |
Qiu Chunhua, He Benjun, Wang Dongxiao, et al. Mechanisms of a shelf submesoscale front in the northern South China Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2023, 202: 104197. doi: 10.1016/j.dsr.2023.104197
|
[15] |
Johnson L, Lee C M, D’Asaro E A, et al. Restratification at a California current upwelling front. Part I: observations[J]. Journal of Physical Oceanography, 2020, 50(5): 1455−1472. doi: 10.1175/JPO-D-19-0203.1
|
[16] |
Shcherbina A Y, Sundermeyer M A, Kunze E, et al. The LatMix summer campaign: submesoscale stirring in the upper ocean[J]. Bulletin of the American Meteorological Society, 2015, 96(8): 1257−1279. doi: 10.1175/BAMS-D-14-00015.1
|
[17] |
Poje A C, Özgökmen T M, Lipphardt Jr B L, et al. Submesoscale dispersion in the vicinity of the Deepwater Horizon spill[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(35): 12693−12698.
|
[18] |
Garabato A C N, Yu Xiaolong, Callies J, et al. Kinetic energy transfers between mesoscale and submesoscale motions in the open ocean’s upper layers[J]. Journal of Physical Oceanography, 2022, 52(1): 75−97. doi: 10.1175/JPO-D-21-0099.1
|
[19] |
Zhang Zhiwei, Zhang Xincheng, Qiu Bo, et al. Submesoscale currents in the subtropical upper ocean observed by long-term high-resolution mooring arrays[J]. Journal of Physical Oceanography, 2021, 51(1): 187−206. doi: 10.1175/JPO-D-20-0100.1
|
[20] |
Ding Yang, Xu Lixiao, Xie Shangping, et al. Submesoscale frontal instabilities modulate large-scale distribution of the winter deep mixed layer in the Kuroshio-Oyashio extension[J]. Journal of Geophysical Research: Oceans, 2022, 127(12): e2022JC018915. doi: 10.1029/2022JC018915
|
[21] |
Chin T M, Vazquez-Cuervo J, Armstrong E M. A multi-scale high-resolution analysis of global sea surface temperature[J]. Remote Sensing of Environment, 2017, 200: 154−169. doi: 10.1016/j.rse.2017.07.029
|
[22] |
Maturi E, Harris A, Mittaz J, et al. A new high-resolution sea surface temperature blended analysis[J]. Bulletin of the American Meteorological Society, 2017, 98(5): 1015−1026. doi: 10.1175/BAMS-D-15-00002.1
|
[23] |
Good S, Fiedler E, Mao Chongyuan, et al. The current configuration of the OSTIA system for operational production of foundation sea surface temperature and ice concentration analyses[J]. Remote Sensing, 2020, 12(4): 720. doi: 10.3390/rs12040720
|
[24] |
Huang Boyin, Liu Chunying, Banzon V, et al. Improvements of the daily optimum interpolation sea surface temperature (DOISST) version 2.1[J]. Journal of Climate, 2021, 34(8): 2923−2939. doi: 10.1175/JCLI-D-20-0166.1
|
[25] |
Gould W J. From Swallow floats to Argo—the development of neutrally buoyant floats[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2005, 52(3/4): 529−543.
|
[26] |
D’Asaro E A. Performance of autonomous Lagrangian floats[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(6): 896−911. doi: 10.1175/1520-0426(2003)020<0896:POALF>2.0.CO;2
|
[27] |
刘钊. 具有实时通信功能的新型海洋观测浮标的结构优化与控制系统研究[D]. 天津: 天津大学, 2009.
Liu Zhao. Structure optimization and control system design of a new type of marine submersible buoy system with real time communication function[D]. Tianjin: Tianjin University, 2009.
|
[28] |
Furlong A, Lamplugh M. In-situ underway sound velocity profiling for calibration of multibeam sounders using a moving vessel profiler (MVP)[J]. International Hydrographic Review, 2000, 1(2): 47-54.
|
[29] |
任强, 于非, 刁新源, 等. 处理走航式海洋多参数剖面测量系统(MVP)温度和电导率滞后效应的方法[J]. 海洋科学, 2014, 38(8): 59−66. doi: 10.11759/hykx20130823002
Ren Qiang, Yu Fei, Diao Xinyuan, et al. A data processing method on the hysteresis effect of temperature and conductivity of moving vessel profiler (MVP)[J]. Marine Sciences, 2014, 38(8): 59−66. doi: 10.11759/hykx20130823002
|
[30] |
刘彦祥. ADCP技术发展及其应用综述[J]. 海洋测绘, 2016, 36(2): 45−49. doi: 10.3969/j.issn.1671-3044.2016.02.011
Liu Yanxiang. Review on development of ADCP technology and its application[J]. Hydrographic Surveying and Charting, 2016, 36(2): 45−49. doi: 10.3969/j.issn.1671-3044.2016.02.011
|
[31] |
Chelton D B, Schlax M G, Samelson R M. Global observations of nonlinear mesoscale eddies[J]. Progress in Oceanography, 2011, 91(2): 167−216. doi: 10.1016/j.pocean.2011.01.002
|
[32] |
Isern-Fontanet J, García-Ladona E, Font J. Identification of marine eddies from Altimetric maps[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(5): 772−778. doi: 10.1175/1520-0426(2003)20<772:IOMEFA>2.0.CO;2
|
[33] |
Robinson S K. Coherent motions in the turbulent boundary layer[J]. Annual Review of Fluid Mechanics, 1991, 23: 601−639. doi: 10.1146/annurev.fl.23.010191.003125
|
[34] |
Nencioli F, Dong C M, Dickey T, et al. A vector geometry–based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the southern California bight[J]. Journal of Atmospheric and Oceanic Technology, 2010, 27(3): 564−579. doi: 10.1175/2009JTECHO725.1
|
[35] |
Souza J M A C, De Boyer Montégut C, Le Traon P Y. Comparison between three implementations of automatic identification algorithms for the quantification and characterization of mesoscale eddies in the South Atlantic Ocean[J]. Ocean Science, 2011, 7(3): 317−334. doi: 10.5194/os-7-317-2011
|
[36] |
Shao Mingming, Ortiz-Suslow D G, Haus B K, et al. The variability of winds and fluxes observed near submesoscale fronts[J]. Journal of Geophysical Research: Oceans, 2019, 124(11): 7756−7780. doi: 10.1029/2019JC015236
|
[37] |
柴永平, 占祥生. MVP在综合调测中对多波束声速改正的应用[J]. 海洋技术学报, 2019, 38(6): 30−34.
Chai Yongping, Zhan Xiangsheng. Application of the MVP for multi-beam sound velocity correction[J]. Journal of Ocean Technology, 2019, 38(6): 30−34.
|
[38] |
Xi Jingyuan, Wang Yuntao, Feng Zhixuan, et al. Variability and intensity of the sea surface temperature front associated with the Kuroshio extension[J]. Frontiers in Marine Science, 2022, 9: 836469. doi: 10.3389/fmars.2022.836469
|
[39] |
Kwon Y O, Alexander M A, Bond N A, et al. Role of the gulf stream and Kuroshio–Oyashio systems in large-scale atmosphere–ocean interaction: a review[J]. Journal of Climate, 2010, 23(12): 3249−3281. doi: 10.1175/2010JCLI3343.1
|