Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 46 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
Ruan Xiaoguang,Zhan Zhaojie,Yan Zhaojin, et al. Digital bathymetric model fusion of offshore waters around China’s coastline based on global bathymetry data[J]. Haiyang Xuebao,2024, 46(7):16–28 doi: 10.12284/hyxb2024062
Citation: Ruan Xiaoguang,Zhan Zhaojie,Yan Zhaojin, et al. Digital bathymetric model fusion of offshore waters around China’s coastline based on global bathymetry data[J]. Haiyang Xuebao,2024, 46(7):16–28 doi: 10.12284/hyxb2024062

Digital bathymetric model fusion of offshore waters around China’s coastline based on global bathymetry data

doi: 10.12284/hyxb2024062
  • Received Date: 2023-07-14
  • Accepted Date: 2024-08-12
  • Rev Recd Date: 2024-01-24
  • Available Online: 2024-08-15
  • Publish Date: 2024-07-01
  • Digital bathymetric models (DBMs) are important basic geographic information data in the fields of offshore engineering construction, resource development, environmental protection and so on. The existing global public DBMs products such as GEBCO (The General Bathymetric Chart of the Oceans), SRTM (The Shuttle Radar Topography Mission) and ETOPO (Earth Topography) have different data types, data sources and product accuracy in different sea areas. In order to reconstruct China’s offshore bathymetric model using global bathymetric data and DBMs products, this paper proposed a weighted fusion reconstruction framework based on bathymetric partition. Firstly, the reliability and applicability of six commonly used DBMs products (GEBCO_2022, SRTM30_PLUS, SRTM15_V2.5.5, TOPO_25.1, DTU10, ETOPO_2022) were compared and analyzed in five dimensions (overall accuracy, different water depths, route profiles, geographical partitions, local details). Then, considering the bathymetric and topographic characteristics, the study area was segmented and partitioned, and the optimal DBMs products in the partition were selected, and the optimal weighted fusion was carried out with the minimum error as the constraint. Finally, the fusion results were processed by measured value recovery, smooth filtering and other post-processing to form a high-precision seamless bathymetric model with 15" resolution in offshore waters around China’s coastline. The results showed that the RMSE of the fusion results was reduced by 27%, 14%, 14% and 13% compared with SRTM30_PLUS, GEBCO_2022, SRTM15_V2.5.5 and ETOPO_2022, and the details of the topograhy were also retained. The feasibility of the fusion framework was proved, which could provide a reference for the fusion reconstruction and timely updating of large-scale seabed topography from multiple datasets.
  • loading
  • [1]
    Sandwell D T, Müller R D, Smith W H F, et al. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure[J]. Science, 2014, 346(6205): 65−67. doi: 10.1126/science.1258213
    [2]
    吴园涛, 段晓男, 沈刚, 等. 强化我国海洋领域国家战略科技力量的思考与建议[J]. 地球科学进展, 2021, 36(4): 413−420. doi: 10.11867/j.issn.1001-8166.2021.039

    Wu Yuantao, Duan Xiaonan, Shen Gang, et al. Thoughts and suggestions on strengthening the national strategic scientific and technological forces in the marine field of China[J]. Advances in Earth Science, 2021, 36(4): 413−420. doi: 10.11867/j.issn.1001-8166.2021.039
    [3]
    张继红, 方建光, 唐启升. 中国浅海贝藻养殖对海洋碳循环的贡献[J]. 地球科学进展, 2005, 20(3): 359−365. doi: 10.3321/j.issn:1001-8166.2005.03.014

    Zhang Jihong, Fang Jianguang, Tang Qisheng. The contribution of shellfish and seaweed mariculture in China to the carbon cycle of coastal ecosystem[J]. Advances in Earth Science, 2005, 20(3): 359−365. doi: 10.3321/j.issn:1001-8166.2005.03.014
    [4]
    陈义兰, 唐秋华, 刘晓瑜, 等. 多源水深数据融合的近海数字水深模型构建[J]. 海洋科学进展, 2021, 39(3): 461−469. doi: 10.3969/j.issn.1671-6647.2021.03.012

    Chen Yilan, Tang Qiuhua, Liu Xiaoyu, et al. Construction of offshore digital bathymetric model based on multi-source bathymetric data fusion[J]. Advances in Marine Science, 2021, 39(3): 461−469. doi: 10.3969/j.issn.1671-6647.2021.03.012
    [5]
    Ruan Xiaoguang, Cheng Liang, Chu Sensen, et al. A new digital bathymetric model of the South China Sea based on the subregional fusion of seven global seafloor topography products[J]. Geomorphology, 2020, 370: 107403. doi: 10.1016/j.geomorph.2020.107403
    [6]
    董箭, 彭认灿, 张立华, 等. 滚动球变换的数字水深模型多尺度表达[J]. 地球信息科学学报, 2012, 14(6): 704−711. doi: 10.3724/SP.J.1047.2012.00704

    Dong Jian, Peng Rencan, Zhang Lihua, et al. Multi-scale representation of digital depth model based on rolling ball transform[J]. Journal of Geo-information Science, 2012, 14(6): 704−711. doi: 10.3724/SP.J.1047.2012.00704
    [7]
    阳凡林, 沈瑞杰, 梅赛, 等. 联合重力异常和重力垂直梯度异常数据反演皇帝山海域海底地形[J]. 海洋学报, 2022, 44(12): 126−135.

    Yang Fanlin, Shen Ruijie, Mei Sai, et al. Inversion of seafloor topography in Emperor Seamount sea area by combined gravity anomalies and vertical gravity gradient anomalies data[J]. Haiyang Xuebao, 2022, 44(12): 126−135.
    [8]
    Weatherall P, Marks K M, Jakobsson M, et al. A new digital bathymetric model of the world's oceans[J]. Earth and Space Science, 2015, 2(8): 331−345. doi: 10.1002/2015EA000107
    [9]
    Becker J J, Sandwell D T, Smith W H F, et al. Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS[J]. Marine Geodesy, 2009, 32(4): 355−371. doi: 10.1080/01490410903297766
    [10]
    Fan Diao, Li Shanshan, Feng Jinkai, et al. A new global bathymetry model: STO_IEU2020[J]. Remote Sensing, 2022, 14(22): 5744. doi: 10.3390/rs14225744
    [11]
    Leon J X, Phinn S R, Hamylton S, et al. Filling the ‘white ribbon’ – a multisource seamless digital elevation model for Lizard Island, northern Great Barrier Reef[J]. International Journal of Remote Sensing, 2013, 34(18): 6337−6354. doi: 10.1080/01431161.2013.800659
    [12]
    Tozer B, Sandwell D T, Smith W H F, et al. Global bathymetry and topography at 15 arc sec: SRTM15+[J]. Earth and Space Science, 2019, 6(10): 1847−1864. doi: 10.1029/2019ea000658
    [13]
    刘洋, 吴自银, 赵荻能, 等. MF多源测深数据融合方法及大洋水深模型构建[J]. 测绘学报, 2019, 48(9): 1171−1181. doi: 10.11947/j.AGCS.2019.20180495

    Liu Yang, Wu Ziyin, Zhao Dineng, et al. The MF method for multi-source bathymetric data fusion and ocean bathymetric model construction[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(9): 1171−1181. doi: 10.11947/j.AGCS.2019.20180495
    [14]
    Okolie C J, Smit J L. A systematic review and meta-analysis of digital elevation model (DEM) fusion: pre-processing, methods and applications[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 188: 1−29. doi: 10.1016/j.isprsjprs.2022.03.016
    [15]
    岳林蔚, 沈焕锋, 袁强强, 等. 基于深度置信网络的多源DEM点面融合模型[J]. 武汉大学学报(信息科学版), 2021, 46(7): 1090−1097.

    Yue Linwei, Shen Huanfeng, Yuan Qiangqiang, et al. A multi-source DEM point-surface fusion model based on deep belief network[J]. Geomatics and Information Science of Wuhan University, 2021, 46(7): 1090−1097.
    [16]
    Guan Liyi, Hu Jun, Pan Hongbo, et al. Fusion of public DEMs based on sparse representation and adaptive regularization variation model[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 169: 125−134. doi: 10.1016/j.isprsjprs.2020.09.005
    [17]
    Wessel P. Tools for analyzing intersecting tracks: the x2sys package[J]. Computers & Geosciences, 2010, 36(3): 348−354. doi: 10.1016/j.cageo.2009.05.009
    [18]
    Tunalioglu N, Ocalan T, Dogan A H. Precise point positioning with GNSS raw measurements from an Android smartphone in marine environment monitoring[J]. Marine Geodesy, 2022, 45(3): 274−294. doi: 10.1080/01490419.2022.2027831
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(4)

    Article views (135) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return