Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 46 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
Sun Yafei,Zhang Yanwei,Lü Danni, et al. Spatial and temporal variations of sediment flux entering into the South China Sea from 2001 to 2020[J]. Haiyang Xuebao,2024, 46(6):98–113 doi: 10.12284/hyxb2024061
Citation: Sun Yafei,Zhang Yanwei,Lü Danni, et al. Spatial and temporal variations of sediment flux entering into the South China Sea from 2001 to 2020[J]. Haiyang Xuebao,2024, 46(6):98–113 doi: 10.12284/hyxb2024061

Spatial and temporal variations of sediment flux entering into the South China Sea from 2001 to 2020

doi: 10.12284/hyxb2024061
  • Received Date: 2023-12-15
  • Accepted Date: 2024-06-05
  • Rev Recd Date: 2024-05-14
  • Available Online: 2024-06-06
  • Publish Date: 2024-06-01
  • Under the influence of human activities and rapid climate change, the fluvial sediments flux entering into the South China Sea (SCS) has changed greatly. Based on the hydrological data of rivers around the SCS and sea surface Suspended Sediment Concentration data from 2001 to 2020, this study investigated spatial and temporal variation of sediment flux entering into the SCS. The results show that the sediment flux entering into the SCS exceeds 345 Mt/a during 2001−2020. Human activities result in a reduction of 300 Mt/a in sediment flux from the Zhujiang River, Red River and Mekong River. The sediment flux is also affected by typhoons and climate change: typhoons are the most important factor affecting the sediment flux of small rivers, and the sediment flux of the Gaoping River during the typhoon can reach 89% of total. Under the influence of the East Asian monsoon system, the sediment flux entering into the SCS characterized by significant seasonal variations, the sediment flux is high in wet season and low in dry season. During the wet season, the sediment flux entering into the SCS accounted for more than 80% of total, accordingly, the river plume has the typical characteristics of high concentration and large diffusion range in the wet season. Under the influence of El Niño-Southern Oscillation, the discharge and sediment flux into the sea around the South China Sea also have different periodic changes. The river discharge and sediment flux of large rivers around the South China Sea show a 2.5−3.0 a period, and are correlated with the NIÑO3.4 index, while the sediment flux Taiwan rivers has no obvious period on the interannual scale. Based on data of the 20 a, this study systematically demonstrates the influences of extreme weather, climate change and dam construction on the sediment flux entering into SCS since the 21st century, which is of great significance in the study of source-to-sink processes and watershed management.
  • loading
  • [1]
    Milliman J D, Farnsworth K L. River Discharge to the Coastal Ocean[M]. Cambridge: Cambridge University Press, 2011.
    [2]
    Wu Ying, Eglinton T I, Zhang Jing, et al. Spatiotemporal variation of the quality, origin, and age of particulate organic matter transported by the Yangtze River (Changjiang)[J]. Journal of Geophysical Research: Biogeosciences, 2018, 123(9): 2908−2921. doi: 10.1029/2017JG004285
    [3]
    Lyu Jixuan, Shi Yong, Zhang Shuo, et al. The reservoirs gradually changed the distribution, source, and flux of particulate organic carbon within the Changjiang River catchment[J]. Journal of Hydrology, 2023, 623: 129808. doi: 10.1016/j.jhydrol.2023.129808
    [4]
    Wei Xing, Cai Shuqun, Ni Peitong, et al. Impacts of climate change and human activities on the water discharge and sediment load of the Pearl River, southern China[J]. Scientific Reports, 2020, 10(1): 16743. doi: 10.1038/s41598-020-73939-8
    [5]
    远立国, 刘玉河, 乔光建. 滦河口入海沙量锐减对湿地生态环境影响[J]. 南水北调与水利科技, 2011, 9(4): 109−112,116.

    Yuan Liguo, Liu Yuhe, Qiao Guangjian. Impacts of significant reduction of sediment flux into the sea in Luanhe River estuary on wetland ecological environment[J]. South-to-North Water Diversion and Water Science & Technology, 2011, 9(4): 109−112,116.
    [6]
    Dethier E N, Renshaw C E, Magilligan F J. Rapid changes to global river suspended sediment flux by humans[J]. Science, 2022, 376(6600): 1447−1452. doi: 10.1126/science.abn7980
    [7]
    Lu Xixi, Ran Lishan, Liu Shaomin, et al. Sediment loads response to climate change: a preliminary study of eight large Chinese rivers[J]. International Journal of Sediment Research, 2013, 28(1): 1−14. doi: 10.1016/S1001-6279(13)60013-X
    [8]
    Liu Zhifei, Zhao Yulong, Colin C, et al. Source-to-sink transport processes of fluvial sediments in the South China Sea[J]. Earth-Science Reviews, 2016, 153: 238−273. doi: 10.1016/j.earscirev.2015.08.005
    [9]
    蔡观强, 彭学超, 张玉兰. 南海沉积物物质来源研究的意义及其进展[J]. 海洋科学进展, 2011, 29(1): 113−121. doi: 10.3969/j.issn.1671-6647.2011.01.014

    Cai Guanqiang, Peng Xuechao, Zhang Yulan. The Significances of and advances in the study of sediment sources in the South China Sea[J]. Advances in Marine Science, 2011, 29(1): 113−121. doi: 10.3969/j.issn.1671-6647.2011.01.014
    [10]
    Lu Xixi, Siew R Y. Water discharge and sediment flux changes over the past decades in the Lower Mekong River: possible impacts of the Chinese dams[J]. Hydrology and Earth System Sciences, 2006, 10(2): 181−195. doi: 10.5194/hess-10-181-2006
    [11]
    Hung C, Lin Guanwei, Kuo H L, et al. Impact of an extreme typhoon event on subsequent sediment discharges and rainfall-driven landslides in affected mountainous regions of Taiwan[J]. Geofluids, 2018, 2018: 8126518.
    [12]
    朱樊, 欧素英, 张铄涵, 等. 基于MODIS影像的珠江口表层悬沙浓度反演及时空变化分析[J]. 泥沙研究, 2015(2): 67−73.

    Zhu Fan, Ou Suying, Zhang Shuohan, et al. MODIS images-based retrieval and analysis of spatial-temporal change of superficial suspended sediment concentration in the Pearl River Estuary[J]. Journal of Sediment Research, 2015(2): 67−73.
    [13]
    Hu Peng, Chen Wen, Wang Lin, et al. Revisiting the ENSO-monsoonal rainfall relationship: new insights based on an objective determination of the Asian summer monsoon duration[J]. Environmental Research Letters, 2022, 17(10): 104050. doi: 10.1088/1748-9326/ac97ad
    [14]
    Liu Feng, Chen Hui, Cai Huayang, et al. Impacts of ENSO on multi-scale variations in sediment discharge from the Pearl River to the South China Sea[J]. Geomorphology, 2017, 293: 24−36. doi: 10.1016/j.geomorph.2017.05.007
    [15]
    Walsh J P, Nittrouer C A. Understanding fine-grained river-sediment dispersal on continental margins[J]. Marine Geology, 2009, 263(1/4): 34−45.
    [16]
    Guo Kai, Zou Tao, Jiang Dejuan, et al. Variability of Yellow River turbid plume detected with satellite remote sensing during water-sediment regulation[J]. Continental Shelf Research, 2017, 135: 74−85. doi: 10.1016/j.csr.2017.01.017
    [17]
    Mertes L A K, Warrick J A. Measuring flood output from 110 coastal watersheds in California with field measurements and SeaWiFS[J]. Geology, 2001, 29(7): 659−662. doi: 10.1130/0091-7613(2001)029<0659:MFOFCW>2.0.CO;2
    [18]
    Isabwe A. 大坝建设对九龙江流量和沉积物输运的影响评估[D]. 厦门: 厦门大学, 2014.

    Isabwe A. Assessing the effects of dams on water discharge and sediment load variability in the Jiulong River[D]. Xiamen: Xiamen University, 2014.
    [19]
    王宇飞, 刘秀娟, 王洋, 等. 近60年来韩江入海泥沙通量变化及其对邻近海域的影响[J]. 人民珠江, 2022, 43(10): 50−56.

    Wang Yufei, Liu Xiujuan, Wang Yang, et al. Changes in sediment flux from Hanjiang River into the sea and its influence on adjacent sea areas over the last 60 years[J]. Pearl River, 2022, 43(10): 50−56.
    [20]
    敖亮挺. 榕江流域多年水沙特性分析[J]. 人民珠江, 2023, 44(1): 78−86. doi: 10.3969/j.issn.1001-9235.2023.01.011

    Ao Liangting. Analysis of water and sediment characteristics in Rongjiang River basin[J]. Pearl River, 2023, 44(1): 78−86. doi: 10.3969/j.issn.1001-9235.2023.01.011
    [21]
    蔡绪军. 漠阳江流域荆山水文站悬移质泥沙特性探讨[J]. 广东水利水电, 2013(3): 29−31.

    Cai Xujun. Study on suspended sediment characteristics of Jingshan Hydrology Station in Moyang River Basin[J]. Guangdong Water Resources and Hydropower, 2013(3): 29−31.
    [22]
    张义宇. 鉴江干流水沙变化探讨[J]. 广东水利电力职业技术学院学报, 2022, 20(1): 8−10, 51. doi: 10.3969/j.issn.1672-2841.2022.01.004

    Zhang Yiyu. Study on the change of runoff and sediment in the trunk of Jianjiang River[J]. Journal of Guangdong Polytechnic of Water Resources and Electric Engineering, 2022, 20(1): 8−10, 51. doi: 10.3969/j.issn.1672-2841.2022.01.004
    [23]
    罗亚飞, 黄海军, 严立文. 广西大风江附近海域悬沙分布遥感反演与输移特征分析[C]//第十八届中国环境遥感应用技术论坛论文集. 西宁: 中国遥感应用协会环境遥感分会, 2014: 61−68.

    Luo Yafei, Huang Haijun, Yan Liwen. Remote sensing inversion and transport characteristics of suspended sediment distribution in waters near Fengfeng River, Guangxi[C]//China Association of Remote Sensing Application. Xining: Environmental Remote Sensing Branch of China Remote Sensing Application Association, 2014: 61−68.
    [24]
    欧芳兰, 邓建明, 卢远, 等. 钦江流域历史径流泥沙演变规律分析[J]. 大众科技, 2020, 22(10): 15−17, 28. doi: 10.3969/j.issn.1008-1151.2020.10.006

    Ou Fanglan, Deng Jianming, Lu Yuan, et al. Analysis on the evolution law of historical runoff and sediment in Qinjiang River Basin[J]. Popular Science & Technology, 2020, 22(10): 15−17, 28. doi: 10.3969/j.issn.1008-1151.2020.10.006
    [25]
    亢振军, 郭伟, 李杰, 等. 茅岭江入海口水质状况分析与评价[J]. 海洋科学前沿, 2017, 4(1): 7−16. doi: 10.12677/AMS.2017.41002

    Kang Zhenjun, Guo Wei, Li Jie, et al. Water quality analysis and evaluation in Maolingjiang River inlet[J]. Advances in Marine Sciences, 2017, 4(1): 7−16. doi: 10.12677/AMS.2017.41002
    [26]
    Phuong H T, Okubo K, Uddin M A. Geochemistry and sediment in the main stream of the Ca River basin, Vietnam: weathering process, solute-discharge relationships, and reservoir impact[J]. Acta Geochimica, 2019, 38(5): 627−641. doi: 10.1007/s11631-019-00327-z
    [27]
    Latif S D, Chong K L, Ahmed A N, et al. Sediment load prediction in Johor river: deep learning versus machine learning models[J]. Applied Water Science, 2023, 13(3): 79. doi: 10.1007/s13201-023-01874-w
    [28]
    Prabakaran K, Nagarajan R, Eswaramoorthi S, et al. Environmental significance and geochemical speciation of trace elements in Lower Baram River sediments[J]. Chemosphere, 2019, 219: 933−953. doi: 10.1016/j.chemosphere.2018.11.158
    [29]
    Chua S D X, Lu Xixi. Sediment load crisis in the Mekong River Basin: severe reductions over the decades[J]. Geomorphology, 2022, 419: 108484. doi: 10.1016/j.geomorph.2022.108484
    [30]
    Carter L, Gavey R, Talling P, et al. Insights into submarine geohazards from breaks in subsea telecommunication cables[J]. Oceanography, 2014, 27(2): 58−67. doi: 10.5670/oceanog.2014.40
    [31]
    Zhang Yanwei, Liu Zhifei, Zhao Yulong, et al. Long-term in situ observations on typhoon-triggered turbidity currents in the deep sea[J]. Geology, 2018, 46(8): 675−678. doi: 10.1130/G45178.1
    [32]
    Mulligan M, Van Soesbergen A, Sáenz L. GOODD, a global dataset of more than 38, 000 georeferenced dams[J]. Scientific Data, 2020, 7(1): 31. doi: 10.1038/s41597-020-0362-5
    [33]
    Lu Xiaoqin, Yu Hui, Ying Ming, et al. Western North Pacific tropical cyclone database created by the China meteorological administration[J]. Advances in Atmospheric Sciences, 2021, 38(4): 690−699. doi: 10.1007/s00376-020-0211-7
    [34]
    Ying Ming, Zhang Wei, Yu Hui, et al. An overview of the China meteorological administration tropical cyclone database[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(2): 287−301. doi: 10.1175/JTECH-D-12-00119.1
    [35]
    Kao S J, Lee T Y, Milliman J D. Calculating highly fluctuated suspended sediment fluxes from mountainous rivers in Taiwan[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2005, 16(3): 653−675. doi: 10.3319/TAO.2005.16.3.653(T)
    [36]
    Zhang Wei, Wei Xiaoyan, Zheng Jinhai, et al. Estimating suspended sediment loads in the Pearl River Delta region using sediment rating curves[J]. Continental Shelf Research, 2012, 38: 35−46. doi: 10.1016/j.csr.2012.02.017
    [37]
    Sun Pengcheng, Wu Yiping, Yang Zhifeng, et al. Can the grain-for-green program really ensure a low sediment load on the Chinese Loess Plateau?[J]. Engineering, 2019, 5(5): 855−864. doi: 10.1016/j.eng.2019.07.014
    [38]
    Quang N H, Loc H H, Park E. Characterizing sediment load variability in the red river system using empirical orthogonal function analysis: implications for water resources management in data poor regions[J]. Journal of Hydrology, 2023, 624: 129891. doi: 10.1016/j.jhydrol.2023.129891
    [39]
    国家能源局. 国家发展改革委关于水电建设管理主要河流划分有关事项的通知[EB/OL]. (2012-01-04). http://www.nea.gov.cn/2012-01/04/c_131260325.htm.

    National Energy Administration. Notice of the national development and reform commission on matters related to the division of major rivers in the management of hydropower construction[EB/OL]. (2012-01-04). http://www.nea.gov.cn/2012-01/04/c_131260325.htm.
    [40]
    水利部. 水利部关于印发《中小河流治理建设管理办法》的通知[EB/OL]. (2023-07-01). https://www.gov.cn/gongbao/2023/issue_10686/202309/content_6902590.html.

    Ministry of Water Resources the People’s Republic of China. Measures for the administration of the governance and construction of small and medium-sized rivers[EB/OL]. (2023-07-01). https://www.gov.cn/gongbao/2023/issue_10686/202309/content_6902590.html.
    [41]
    Dadson S J, Hovius N, Chen H, et al. Links between erosion, runoff variability and seismicity in the Taiwan orogen[J]. Nature, 2003, 426(6967): 648−651. doi: 10.1038/nature02150
    [42]
    Walling D E. The changing sediment load of the Mekong River[J]. AMBIO: A Journal of the Human Environment, 2008, 37(3): 150−157. doi: 10.1579/0044-7447(2008)37[150:TCSLOT]2.0.CO;2
    [43]
    Xue Zuo, Liu J P, Ge Qian. Changes in hydrology and sediment delivery of the Mekong River in the last 50 years: connection to damming, monsoon, and ENSO[J]. Earth Surface Processes and Landforms, 2011, 36(3): 296−308. doi: 10.1002/esp.2036
    [44]
    Unverricht D, Nguyen T C, Heinrich C, et al. Suspended sediment dynamics during the inter-monsoon season in the subaqueous Mekong Delta and adjacent shelf, southern Vietnam[J]. Journal of Asian Earth Sciences, 2014, 79: 509−519. doi: 10.1016/j.jseaes.2012.10.008
    [45]
    李珏, 乔璐璐, DucCuong L, 等. 南海北部湾表层悬浮体分布规律[J]. 海洋地质与第四纪地质, 2020, 40(2): 10−18.

    Li Jue, Qiao Lulu, DucCuong L, et al. Surficial distribution of suspended sediment in Beibu Gulf of the South China Sea[J]. Marine Geology & Quaternary Geology, 2020, 40(2): 10−18.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(3)

    Article views (247) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return