Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 46 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
Wang Hongwei,Qiao Yue,Feng Xuezhi, et al. Characteristics of suspended particulate matter in the northern South China Sea affected by internal solitary waves[J]. Haiyang Xuebao,2024, 46(6):114–129 doi: 10.12284/hyxb2024057
Citation: Wang Hongwei,Qiao Yue,Feng Xuezhi, et al. Characteristics of suspended particulate matter in the northern South China Sea affected by internal solitary waves[J]. Haiyang Xuebao,2024, 46(6):114–129 doi: 10.12284/hyxb2024057

Characteristics of suspended particulate matter in the northern South China Sea affected by internal solitary waves

doi: 10.12284/hyxb2024057
  • Received Date: 2023-10-30
  • Rev Recd Date: 2024-05-13
  • Available Online: 2024-07-16
  • Publish Date: 2024-06-01
  • Suspended particulate matter (SPM) plays a key role in the “source-sink” deposition system, and internal isolated waves, a common dynamical phenomenon in the South China Sea, have been shown to be an important factor influencing the distribution of SPM and the deposition process. The study was carried out in September 2022 in the sea area from Luzon Strait to Dongsha Islands, using LISST-deep and CTD equipment for simultaneous observation to study the distribution of suspended particulate matter in terms of particle size and volume concentration. The satellite remote sensing data during the investigation period were used to delineate the influence range of internal isolated waves and to reveal the influence of internal isolated waves on the characterization changes of suspended particulate matter during transport from a kinetic point of view. It was found that: (1) the distribution of suspended particulate matter of smaller sizes (15−25 μm) was dominated in the amplitude depth interval (6−79 m) of the inner isolated wave, and the closer the depth of the trough of the inner isolated wave was, the higher the frequency of the occurrence of suspended particulate matter of smaller sizes. (2) The distribution of suspended particles spreads from the center of the inner isolated wave crest line to both sides, forming a low volume concentration zone (≤91 μL/L) in the center, and forming a high concentration zone (≥500 μL/L) on both sides of the crest line and the distal end of the propagation path of the inner isolated wave. In addition, the study further reveals that the internal isolated wave breaks down the aggregated suspended particles into smaller size and single composition particles through modification, and changes the volume concentration distribution of the suspended particles at different locations of the crest line, propagation path and amplitude depth through control, which provides an important theoretical basis for the understanding of the South China Sea source-sink deposition system.
  • loading
  • [1]
    秦蕴珊, 李凡, 徐善民, 等. 南黄海海水中悬浮体的研究[J]. 海洋与湖沼, 1989, 20(2): 101−112. doi: 10.3321/j.issn:0029-814X.1989.02.002

    Qin Yunshan, Li Fan, Xu Shanming, et al. Suspended matter in the South Yellow Sea[J]. Oceanologia et Limnologia Sinica, 1989, 20(2): 101−112. doi: 10.3321/j.issn:0029-814X.1989.02.002
    [2]
    方建勇, 李云海, 尹希杰, 等. 南极普里兹湾海域夏季表层悬浮颗粒物物质组分研究[J]. 海洋地质与第四纪地质, 2015, 35(3): 175−187.

    Fang Jianyong, Li Yunhai, Yin Xijie, et al. Composition of summer surficial suspended particles in the Prydzbay, Antarctica[J]. Marine Geology & Quaternary Geology, 2015, 35(3): 175−187.
    [3]
    郭锦宝. 化学海洋学[M]. 厦门: 厦门大学出版社, 1997.

    Guo Jinbao. Chemical Oceanography[M]. Xiamen: XiamenUniversity Press, 1997.
    [4]
    Turner A, Millward GE. Suspended particles: their role in estuarine biogeochemical cycles[J]. Estuarine, Coastal and ShelfScience, 2002, 55(6): 857−883. doi: 10.1006/ecss.2002.1033
    [5]
    Washburn L, Swenson MS, Largier J L, et al. Cross-shelf sediment transport by an anticyclonic eddy off northern California[J]. Science, 1993, 261(5128): 1560−1564. doi: 10.1126/science.261.5128.1560
    [6]
    Zhang J, Liu Sumei, Xu Hui, et al. Riverine sources and estuarine fates of particulate organic carbon from North China in late summer[J]. Estuarine, Coastal and Shelf Science, 1998, 46(3): 439−448. doi: 10.1006/ecss.1997.0277
    [7]
    Ma M, Feng Z, Guan C, et al. DDT, PAH and PCB in sediments from the intertidal zone of the Bohai Sea and the Yellow Sea[J]. Marine Pollution Bulletin, 2001, 42(2): 132−136. doi: 10.1016/S0025-326X(00)00118-1
    [8]
    杨作升, 郭志刚, 王兆祥, 等. 黄东海陆架悬浮体向其东部深海区输送的宏观格局[J]. 海洋学报, 1992, 14(2): 81−90.

    Yang Zuosheng, Guo Zhigang, Wang Zhaoxiang, et al. Macropatterns of suspended body transport from the Huangdonghai shelf to the eastern abyssal zone[J]. Haiyang Xuebao, 1992, 14(2): 81−90.
    [9]
    郭志刚, 杨作升, 张东奇, 等. 冬、夏季东海北部悬浮体分布及海流对悬浮体输运的阻隔作用[J]. 海洋学报, 2002, 24(5): 71−80. doi: 10.3321/j.issn:0253-4193.2002.05.009

    Guo Zhigang, Yang Zuosheng, Zhang Dongqi, et al. Seasonal distribution of suspended matter in the northern East China Sea and barrier effect of current circulation on its transport[J]. Haiyang Xuebao, 2002, 24(5): 71−80. doi: 10.3321/j.issn:0253-4193.2002.05.009
    [10]
    Woodward J C, Walling D E. A field sampling method to obtain representative samples of composite fluvial suspended sediment particles for SEM analysis[J]. Journal of Sedimentary Petrology, 1992, 64: 742−744.
    [11]
    邵和宾, 范德江, 麦晓磊, 等. 长江口典型断面悬浮体颗粒类型与粒级构成及其影响因素[J]. 海洋地质与第四纪地质, 2013, 33(3): 47−56.

    Shao Hebin, Fan Dejiang, Mai Xiaolei, et al. Types and size of suspended particles in a typical cross section at the Changjiang estuary and influence factors[J]. Marine Geology& Quaternary Geology, 2013, 33(3): 47−56.
    [12]
    Inthorn M, Mohrholz V, Zabel M. Nepheloid layer distribution in the Benguela up welling area offshore Namibia[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2006, 53(8): 1423−1438. doi: 10.1016/j.dsr.2006.06.004
    [13]
    Hwang J, Manganini SJ, Montluçon DB, et al. Dynamics of particle export on the Northwest Atlantic margin[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2009, 56(10): 1792−1803. doi: 10.1016/j.dsr.2009.05.007
    [14]
    Marttila H, Kløve B. Spatial and temporal variation in particle size and particulate organic matter content in suspended particulate matter from peatland-dominated catchments in Finland[J]. Hydrological Processes, 2015, 29(6): 1069−1079. doi: 10.1002/hyp.10221
    [15]
    Lamb K G. Particle transport by nonbreaking, solitary internal waves[J]. Journal of Geophysical Research: Oceans, 1997, 102(C8): 18641−18660. doi: 10.1029/97JC00441
    [16]
    Johnson D R, Weidemann A, Pegau WS. Internal tidal bores and bottom nepheloid layers[J]. Continental Shelf Research, 2001, 21(13/14): 1473−1484.
    [17]
    McCave I N. Local and global aspects of the bottom nepheloid layers in the world ocean[J]. Netherlands Journal of Sea Research, 1986, 20(2/3): 167−181.
    [18]
    Bourgault D, Morsilli M, Richards C, et al. Sediment resuspension and nepheloid layers induced by long internal solitary waves shoaling orthogonally on uniform slopes[J]. Continental Shelf Research, 2014, 72: 21−33. doi: 10.1016/j.csr.2013.10.019
    [19]
    Aghsaee P, Boegman L. Experimental investigation of sediment resuspension beneath internal solitary waves of depression[J]. Journal of Geophysical Research: Oceans, 2015, 120(5): 3301−3314. doi: 10.1002/2014JC010401
    [20]
    冯士筰, 李凤岐, 李少菁. 海洋科学导论[M]. 北京: 高等教育出版社, 1999.

    Feng Shizuo, Li Fengqi, Li Shaojing. An Introduction to Marine Science[M]. Beijing: Higher Education Press, 1999.
    [21]
    苏纪兰. 中国近海水文[M]. 北京: 中国科学出版社, 2005.

    Su Jilan. Chinese Offshore Hydrography[M]. Beijing: China Science Press, 2005.
    [22]
    王东晓, 杜岩, 施平. 南海上层物理海洋学气候图集[M]. 北京: 气象出版社, 2002.

    Wang Dongxiao, Du Yan, Shi P. Climatological Atlas of Physical Oceanography in the Upper Layer of the South China Sea[M]. Beijing: Meteorological Press, 2002.
    [23]
    Liu A K, Chang Y S, Hsu M K, et al. Evolution of nonlinear internal waves in the East and South China Seas[J]. Journal of Geophysical Research: Oceans, 1998, 103(C4): 7995−8008. doi: 10.1029/97JC01918
    [24]
    Hsu M K, Liu A K. Nonlinear internal waves in the South China Sea[J]. Canadian Journal of Remote Sensing, 2000, 26(2): 72−81. doi: 10.1080/07038992.2000.10874757
    [25]
    Duda T F, Lynch J F, Irish J D, et al. Internal tide and nonlinear internal wave behavior at the continental slope in the Northern South China Sea[J]. IEEE Journal of Oceanic Engineering, 2004, 29(4): 1105−1130. doi: 10.1109/JOE.2004.836998
    [26]
    Milliman J D, Syvitski J P M. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers[J]. The Journal of Geology, 1992, 100(5): 525−544. doi: 10.1086/629606
    [27]
    Liu Zhifei, Tuo Shouting, Colin C, et al. Detrital fine-grained sediment contribution from Taiwan to the northern South China Sea and its relation to regional ocean circulation[J]. Marine Geology, 2008, 255(3/4): 149−155.
    [28]
    郝锵, 宁修仁, 刘诚刚, 等. 南海北部初级生产力遥感反演及其环境调控机制[J]. 海洋学报, 2007, 29(3): 58−68. doi: 10.3321/j.issn:0253-4193.2007.03.008

    Hao Qiang, Ning Xiuren, Liu Chenggang, et al. Satellite and in situ observations of primary production in the northern South China Sea[J]. Haiyang Xuebao, 2007, 29(3): 58−68. doi: 10.3321/j.issn:0253-4193.2007.03.008
    [29]
    李舒豪, 李广雪, 徐继尚, 等. 基于ADCP反演渤海湾悬浮体浓度年变化[J]. 海洋地质前沿, 2020, 36(1): 30−41.

    Li Shuhao, Li Guangxue, Xu Jishang, et al. Annual variation of suspended sediment concentration in Bohai Bay based on adcp[J]. Marine Geology Frontiers, 2020, 36(1): 30−41.
    [30]
    Agrawal Y C, Pottsmith H C. Instruments for particle size and settling velocity observations in sediment transport[J]. Marine Geology, 2000, 168(1/4): 89−114.
    [31]
    Mikkelsen O A, Hill P S, Milligan T G, et al. In situ particle size distributions and volume concentrations from a LISST-100 laser particle sizer and a digital floc camera[J]. Continental Shelf Research, 2005, 25(16): 1959−1978. doi: 10.1016/j.csr.2005.07.001
    [32]
    Phillips J, Walling D E, Droppo I G, et al. Intra-storm and seasonal variations in the effective particle size characteristics and effective particle density of fluvial suspended sediment in the Exe Basin, Devon, United Kingdom[M]//Liss S N, Droppo I G, Leppard G G, et al. Flocculation in Natural and Engineered Environmental Systems. Boca Raton: CRC Press, 2005: 47−70.
    [33]
    Huang Xiaodong, Tian Jiwei, Zhao Wei. The behaviors of internal solitary waves near the continental shelf of South China Sea inferred from satellite images[J]. Advanced Materials Research, 2012, 588-589: 2131−2135. doi: 10.4028/www.scientific.net/AMR.588-589.2131
    [34]
    张涛, 张旭东. 基于MODIS和VIIRS遥感图像的苏禄−苏拉威西海内孤立波特征研究[J]. 海洋与湖沼, 2020, 51(5): 991−1000. doi: 10.11693/hyhz20200100027

    Zhang Tao, Zhang Xudong. Characteristics on internal solitary waves in the Sulu-Celebes Sea based on MODIS and VIIRS remote sensing images[J]. Oceanologia et Limnologia Sinica, 2020, 51(5): 991−1000. doi: 10.11693/hyhz20200100027
    [35]
    Caponi E A, Crawford D R, Yuen H C, et al. Modulation of radar backscatter from the ocean by a variable surface current[J]. Journal of Geophysical Research: Oceans, 1988, 93(C10): 12249−12263. doi: 10.1029/JC093iC10p12249
    [36]
    Alpers W. Theory of radar imaging of internal waves[J]. Nature, 1985, 314(6008): 245−247. doi: 10.1038/314245a0
    [37]
    Zhang Xudong, Wang Jing, Sun Lina, et al. Study on the amplitude inversion of internal waves at Wenchang area of the South China Sea[J]. Acta Oceanologica Sinica, 2016, 35(7): 14−19.
    [38]
    Zheng Quanan, Susanto R D, Ho C R, et al. Statistical and dynamical analyses of generation mechanisms of solitary internal waves in the northern South China Sea[J]. Journal of Geophysical Research: Oceans, 2007, 112(C3): C03021.
    [39]
    Alford M H, Lien R C, Simmons H, et al. Speed and evolution of nonlinear internal waves transiting the South China Sea[J]. Journal of Physical Oceanography, 2010, 40(6): 1338−1355. doi: 10.1175/2010JPO4388.1
    [40]
    Huang Xiaodong, Zhao Wei, Tian Jiwei, et al. Mooring observations of internal solitary waves in the deep basin west of Luzon Strait[J]. Acta Oceanologica Sinica, 2014, 33(3): 82−89.
    [41]
    董礼先, 苏纪兰, 王康墡. 黄渤海潮流场及其与沉积物搬运的关系[J]. 海洋学报, 1989, 11(1): 102−114.

    Dong Lixian, Su Jilan, Wang Kangshan. Tidal flow field in the Yellow and Bohai Sea and its relationship with sediment transport[J]. Haiyang Xuebao, 1989, 11(1): 102−114.
    [42]
    田壮才, 郭秀军, 余乐, 等. 内孤立波悬浮海底沉积物研究进展[J]. 地球科学进展, 2018, 33(2): 166−178. doi: 10.11867/j.issn.1001-8166.2018.02.0166

    Tian Zhuangcai, Guo Xiujun, Yu Le, et al. Review of the seabed sediment resuspension by internal solitary wave[J]. Advances in Earth Science, 2018, 33(2): 166−178. doi: 10.11867/j.issn.1001-8166.2018.02.0166
    [43]
    Boyd P W, Trull T W. Understanding the export of biogenic particles in oceanic waters: is there consensus?[J]. Progress in Oceanography, 2007, 72(4): 276−312. doi: 10.1016/j.pocean.2006.10.007
    [44]
    Masunaga E, Homma H, Yamazaki H, et al. Mixing and sediment resuspension associated with internal bores in a shallow bay[J]. Continental Shelf Research, 2015, 110: 85−99. doi: 10.1016/j.csr.2015.09.022
    [45]
    倪晓波, 黄大吉. 海洋次表层叶绿素最大值的分布和形成机制研究[J]. 海洋科学, 2006, 30(5): 58−64,70. doi: 10.3969/j.issn.1000-3096.2006.05.012

    Ni Xiaobo, Huang Daji. Subsurface chlorophyll maximum: its temporal-spatial distribution and formation mechanism in the ocean[J]. Marine Sciences, 2006, 30(5): 58−64,70. doi: 10.3969/j.issn.1000-3096.2006.05.012
    [46]
    Meyer L D, Harmon W C, McDowell LL. Sediment sizes eroded from crop row side slopes[J]. Transactions of the ASAE, 1980, 23(4): 0891−0898. doi: 10.13031/2013.34682
    [47]
    Haury L R, Briscoe M G, Orr M H. Tidally generated internal wave packets in Massachusetts Bay[J]. Nature, 1979, 278(5702): 312−317. doi: 10.1038/278312a0
    [48]
    Lennert-CodyCE, Franks PJS. Plankton patchiness in high-frequency internal waves[J]. Marine ecology Progress Series, 1999, 186: 59−66. doi: 10.3354/meps186059
    [49]
    Da Silva JCB, New AL, Srokosz M A, et al. On the observability of internal tidal waves in remotely-sensed ocean colour data[J]. Geophysical Research Letters, 2002, 29(12): 1569.
    [50]
    Moore S E, Lien R C. Pilot whales follow internal solitary waves in the South China Sea[J]. Marine Mammal Science, 2007, 23(1): 193−196. doi: 10.1111/j.1748-7692.2006.00086.x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(5)

    Article views (143) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return