Citation: | Liu Xiaoyan,Song Xiaojiang,Guo Anboyu, et al. An intelligent algorithm for constructing quasi-real-time sea surface wind field[J]. Haiyang Xuebao,2024, 46(6):51–65 doi: 10.12284/hyxb2024051 |
[1] |
张巍, 杜超凡, 郭安博宇, 等. 一种机器学习海面风场快速融合的方法[J]. 海洋学报, 2022, 44(11): 144−158.
Zhang Wei, Du Chaofan, Guo Anboyu, et al. Sea surface wind field smart fusion base on machine learning method[J]. HaiyangXuebao, 2022, 44(11): 144−158.
|
[2] |
柳婧, 宋晓姜, 王彰贵. 海面风场融合技术综述[J]. 海洋预报, 2018, 35(3): 81−87.
Liu Jing, Song Xiaojiang, Wang Zhanggui. Review of fusion technology of sea surface wind[J]. Marine Forecasts, 2018, 35(3): 81−87.
|
[3] |
旷芳芳, 张友权, 张俊鹏, 等. 3种海面风场资料在台湾海峡的比较和评估[J]. 海洋学报, 2015, 37(5): 44−53.
Kuang Fangfang, Zhang Youquan, Zhang Junpeng, et al. Comparison and evaluation of three sea surface wind products in Taiwan Strait[J]. HaiyangXuebao, 2015, 37(5): 44−53.
|
[4] |
詹思玙, 齐琳琳, 卢伟. 基于CCMP资料和现场观测资料的西北太平洋海面风场特征分析[J]. 海洋预报, 2017, 34(2): 10−20.
Zhan Siyu, Qi Linlin, Lu Wei. Analysis of sea surface wind in northwest Pacific based on CCMP satellite data[J]. Marine Forecasts, 2017, 34(2): 10−20.
|
[5] |
金铸钰, 刘凯, 郭安博宇, 等. 基于CCMP的西北太平洋海面风场特征分析[J]. 海洋预报, 2022, 39(2): 20−33.
Jin Zhuyu, Liu Kai, Guo Anboyu, et al. Characteristics analysis of the sea surface wind in the Northwest Pacific basedon CCMP satellite data[J]. MarineForecasts, 2022, 39(2): 20−33.
|
[6] |
林晓娟, 李响, 刘晓燕, 等. EC预报数据在中国近海的适用性研究[J]. 海洋预报, 2023, 40(6): 51−66.
Lin Xiaojuan, Li Xiang, Liu Xiaoyan, et al. Applicability of EC forecast data in China’s offshore waters[J]. Marine Forecasts, 2023, 40(6): 51−66.
|
[7] |
郑崇伟. 基于CCMP风场的近22年中国海海表风场特征分析[J]. 气象与减灾研究, 2011, 34(3): 41−46.
Zheng Chongwei. Sea surface wind field analysis in the China seaduring the last 22 years with CCMP wind field[J]. Meteorology and Disaster Reduction Research, 2011, 34(3): 41−46.
|
[8] |
柳婧. 基于最优插值方法的中国近海海面风场资料融合研究[D]. 北京: 国家海洋环境预报中心, 2018.
Liu Jing. Research on data fusion of sea surface wind in China’s offshore based on optimal interpolation method[D]. Beijing: NationalMarine Environmental Forecasting Center, 2018.
|
[9] |
唐焕丽, 姚琴, 吕晓莹, 等. 多源卫星融合的广东海域海面风场特征[J]. 遥感信息, 2020, 35(1): 117−122.
Tang Huanli, Yao Qin, Lü Xiaoying, et al. Characteristics of sea surface wind field in Guangdong sea area with multi-source satellite fusion[J]. Remote Sensing Information, 2020, 35(1): 117−122.
|
[10] |
吕思睿. 多源卫星海面风场融合研究[D]. 南京: 南京信息工程大学, 2023.
Lü Sirui. Multi-source satellite sea surface wind field fusion study[D]. Nanjing: Nanjing University of Information Science & Technology, 2023.
|
[11] |
齐亚琳, 林明森. 数据融合技术在海洋二号卫星数据中的应用[J]. 航天器工程, 2012, 21(3): 117−123.
Qi Yalin, Lin Mingsen. Application of the data fusion technique in HY-2 satellite data[J]. Spacecraft Engineering, 2012, 21(3): 117−123.
|
[12] |
Zou Juhong, Lin Minsen, Zou Bin, et al. Fusion of sea surface wind vector data acquired by multi-source active and passive sensors in China sea[J]. International Journal of Remote Sensing, 2017, 38(23): 6477−6491. doi: 10.1080/01431161.2017.1356486
|
[13] |
刘宇昕. 星载微波散射计数据和数值模式产品海面风场混合分析研究[D]. 北京: 国家海洋环境预报研究中心, 2013.
Liu Yuxin. A study on the mixing analysis of sea surface wind field with satellite microwave scatterometer data and numerical model products[D]. Beijing: NationalMarine Environmental Forecasting Center, 2013.
|
[14] |
李莎, 舒红, 徐正全. 利用时空Kriging进行气温插值研究[J]. 武汉大学学报•信息科学版, 2012, 37(2): 237−241.
Li Sha, Shu Hong, Xu Zhengquan. Interpolation of temperature based on spatial-temporal kriging[J]. Geomatics and Information Science of Wuhan University, 2012, 37(2): 237−241.
|
[15] |
许遐祯, 高健, 张康宇, 等. 基于多源数据的中国近海风场融合方法研究[J]. 杭州师范大学学报(自然科学版), 2016, 15(3): 325−330.
Xu Xiazhen, Gao Jian, Zhang Kangyu. Fusion method of China’s offshore wind field based on multi-source data[J]. Journal of Hangzhou Normal University (Natural Science Edition), 2016, 15(3): 325−330.
|
[16] |
项杰, 王慧鹏, 王春明, 等. 南海海面风场变分融合的初步研究[J]. 热带气象学报, 2015, 31(2): 153−160.
Xiang Jie, Wang Huipeng, Wang Chunming, et al. Preliminary study on variational blending of surface vector winds in South China Sea[J]. Journal of Tropical Meteorology, 2015, 31(2): 153−160.
|
[17] |
邹婷. 2DVAR算法在局地海表流场和风场融合中的应用[D]. 南京: 南京信息工程大学, 2020.
Zou Ting. Application of 2DVAR algorithms to the fusion of localized sea surface current and wind fields[D]. Nanjing: Nanjing University of Information Science and Technology, 2020.
|
[18] |
吴新荣, 王喜冬, 李威, 等. 海洋数据同化与数据融合技术应用综述[J]. 海洋技术学报, 2015, 34(3): 97−103.
Wu Xinrong, Wang Xidong, Li Wei, et al. Review of the application of ocean data assimilation and data fusion techniques[J]. Journal of Ocean Technology, 2015, 34(3): 97−103.
|
[19] |
张东翔. 多源卫星海面风场产品检验及融合研究[D]. 长沙: 国防科技大学, 2018.
Zhang Dongxiang. Research of multi-source satellite sea surface wind validation and data fusion[D]. Changsha: National University of Defense Technology, 2018.
|
[20] |
李明悝, 侯一筠. 利用QuikSCAT/NCEP混合风场及WAVEWATCH模拟东中国海风浪场[J]. 海洋科学, 2005, 29(6): 9−12.
Li Mingkui, HouYijun. Simulating wind-wave field of the East China Seas with QuikSCAT/NCEP blended wind and WAVEWATCH[J]. Marine Sciences, 2005, 29(6): 9−12.
|
[21] |
Atlas R, Hoffman R N, Ardizzone J, et al. Across-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications[J]. Bulletin of the American Meteorological Society, 2011, 92(2): 157−174.
|
[22] |
Mears C A, Scott J, Wentz F J, et al. A near-real-time version of the Cross-Calibrated Multiplatform (CCMP) ocean surface wind velocity data set[J]. Journal of Geophysical Research: Oceans, 2019, 124(10): 6997−7010. doi: 10.1029/2019JC015367
|
[23] |
Mears C, Lee T, Ricciardulli L, et al. Improving the accuracy of the Cross-Calibrated Multi-Platform (CCMP) ocean vector winds[J]. Remote Sensing, 2022, 14(17): 4230. doi: 10.3390/rs14174230
|
[24] |
王慧, 隋伟辉. 基于CCMP风场的中国近海18个海区海面大风季节变化特征分析[J]. 气象科技, 2013, 41(4): 720−725.
Wang Hui, Sui Weihui. Seasonal variation analysis of sea surface winds in China Sea areas with CCMP wind field data[J]. Meteorological Science and Technology, 2013, 41(4): 720−725.
|
[25] |
刘建强, 叶小敏, 兰友国. 我国海洋卫星遥感大数据及其应用服务[J]. 大数据, 2022, 8(2): 75−88.
Liu Jianqiang, Ye Xiaomin, Lan Youguo. Remote sensing big data from Chinese oceansatellites and its application service[J]. Big Data Research, 2022, 8(2): 75−88.
|
[26] |
林明森, 何贤强, 贾永君, 等. 中国海洋卫星遥感技术进展[J]. 海洋学报, 2019, 41(10): 99−112.
Lin Mingsen, He Xianqiang, JiaYongjun, et al. Advances in marine satellite remote sensing technology in China[J]. HaiyangXuebao, 2019, 41(10): 99−112.
|
[27] |
Park S H, Yoo J, Son D, et al. Improved calibration of wind estimates from advanced scatterometer MetOp-B in Korean Seas using deep neural network[J]. Remote Sensing, 2021, 13(20): 4164. doi: 10.3390/rs13204164
|
[28] |
Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the18th International Conferenceon Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015. Munich: Springer, 2015.
|
[29] |
朱延和. 基于U-net神经网络的新疆地面气温和风的预报订正研究[D]. 南京: 南京信息工程大学, 2023.
Zhu Yanhe. Prediction correction of surface temperature and wind in Xinjiang based on U-net neural network[D]. Nanjing: Nanjing University of Information Science &Technology, 2023.
|
[30] |
张延彪, 陈明轩, 韩雷, 等. 数值天气预报多要素深度学习融合订正方法[J]. 气象学报, 2022, 80(1): 153−167. doi: 10.11676/qxxb2021.066
Zhang Yanbiao, Chen Mingxuan, Han Lei, et al. Multi-element deep learning fusion correction method for numerical weather prediction[J]. ActaMeteorologicaSinica, 2022, 80(1): 153−167 doi: 10.11676/qxxb2021.066
|
[31] |
Han Lei, Chen Mingxuan, Chen Kangkai, et al. A deep learning method for bias correction of ECMWF 24-240 h forecasts[J]. Advances in Atmospheric Sciences, 2021, 38(9): 1444−1459. doi: 10.1007/s00376-021-0215-y
|
[32] |
张延彪, 宋林烨, 陈明轩, 等. 基于卷积神经网络的京津冀地区高分辨率格点预报偏差订正试验[J]. 大气科学学报, 2022, 45(6): 850−862.
Zhang Yanbiao, Song Linye, Chen Mingxuan, et al. A study of error correction for high-resolution gridded forecast based on a convolutional neural network in the Beijing-Tianjin-Hebei Region[J]. Transactions of Atmospheric Sciences, 2022, 45(6): 850−862.
|
[33] |
Lagerquist R, Stewart J Q, Ebert-Uphoff I, et al. Using deep learning to nowcast the spatial coverage of convection from Himawari-8 satellite data[J]. Monthly Weather Review, 2021, 149(12): 3897−3921. doi: 10.1175/MWR-D-21-0096.1
|