Citation: | Zhou Ruotong,Tan Kai,Yang Jianru, et al. Extraction of salt-marsh vegetation “fairy circles” from UAV images by the combination of SAM visual segmentation model and random forest machine learning algorithm[J]. Haiyang Xuebao,2024, 46(5):116–126 doi: 10.12284/hyxb2024048 |
[1] |
韩倩倩, 牛振国, 吴孟泉, 等. 基于潮位校正的中国潮间带遥感监测及变化[J]. 科学通报, 2019, 64(4): 456−473. doi: 10.1360/N972018-00723
Han Qianqian, Niu Zhenguo, Wu Mengquan, et al. Remote-sensing monitoring and analysis of China intertidal zone changes based on tidal correction[J]. Chinese Science Bulletin, 2019, 64(4): 456−473. doi: 10.1360/N972018-00723
|
[2] |
陈一宁, 陈鹭真. 滨海蓝碳生态系统的碳库间相互作用研究进展及展望[J]. 海洋学研究, 2023, 41(1): 3−13.
Chen Yining, Chen Luzhen. Interactions between vegetation and sediment carbon pools within coastal blue carbon ecosystems: A review and perspective[J]. Journal of Marine Sciences, 2023, 41(1): 3−13.
|
[3] |
Zhao Lixia, Zhang Kang, Siteur K, et al. Fairy circles reveal the resilience of self-organized salt marshes[J]. Science Advances, 2021, 7(6): eabe1100. doi: 10.1126/sciadv.abe1100
|
[4] |
Rietkerk M, Bastiaansen R, Banerjee S, et al. Evasion of tipping in complex systems through spatial pattern formation[J]. Science, 2021, 374(6564): eabj0359. doi: 10.1126/science.abj0359
|
[5] |
Ruiz-Reynés D, Gomila D, Sintes T, et al. Fairy circle landscapes under the sea[J]. Science Advances, 2017, 3(8): e1603262. doi: 10.1126/sciadv.1603262
|
[6] |
de Paoli H, van der Heide T, van den Berg A, et al. Behavioral self-organization underlies the resilience of a coastal ecosystem[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(30): 8035−8040.
|
[7] |
Tao Pengjie, Tan Kai, Ke Tao, et al. Recognition of ecological vegetation fairy circles in intertidal salt marshes from UAV LiDAR point clouds[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 114: 103029. doi: 10.1016/j.jag.2022.103029
|
[8] |
Liu Qingsheng, Huang Chong, Liu Gaohuan, et al. Comparison of CBERS-04, GF-1, and GF-2 satellite panchromatic images for mapping quasi-circular vegetation patches in the Yellow River Delta, China[J]. Sensors, 2018, 18(8): 2733. doi: 10.3390/s18082733
|
[9] |
Shi Lei, Liu Qingsheng, Huang Chong, et al. Mapping quasi-circular vegetation patch dynamics in the Yellow River Delta, China, between 1994 and 2016[J]. Ecological Indicators, 2021, 126: 107656. doi: 10.1016/j.ecolind.2021.107656
|
[10] |
Zhang Yunjie, Liu Qingsheng, Liu Gaohuan, et al. Mapping of circular or elliptical vegetation community patches: A comparative use of SPOT-5, ALOS and ZY-3 imagery[C]//Proceedings of the 8th International Congress on Image and Signal Processing. Shenyang: IEEE, 2015.
|
[11] |
Zhang Xianlong, Zhang Fei, Qi Yaxiao, et al. New research methods for vegetation information extraction based on visible light remote sensing images from an unmanned aerial vehicle (UAV)[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 78: 215−226. doi: 10.1016/j.jag.2019.01.001
|
[12] |
Kirillov A , Mintun E , Ravi N , et al. Segment Anything[C]//2023 IEEE/CVF International Conference on Computer Vision (ICCV). 0[2024-02-29]. DOI: 10.1109/ICCV51070.2023.00371.
|
[13] |
Ning Guochen, Liang Hanyin, Jiang Zhongliang, et al. The potential of 'Segment Anything' (SAM) for universal intelligent ultrasound image guidance[J]. Bioscience Trends, 2023, 17(3): 230−233. doi: 10.5582/bst.2023.01119
|
[14] |
Chen Fang, Chen Lingyu, Han Haojie, et al. The ability of Segmenting Anything Model (SAM) to segment ultrasound images[J]. Bioscience Trends, 2023, 17(3): 211−218. doi: 10.5582/bst.2023.01128
|
[15] |
Shi Peilun, Qiu Jianing, Abaxi S M D, et al. Generalist vision foundation models for medical imaging: A case study of segment anything model on zero-shot medical segmentation[J]. Diagnostics, 2023, 13(11): 1947. doi: 10.3390/diagnostics13111947
|
[16] |
Maxwell A E, Warner T A, Fang Fang. Implementation of machine-learning classification in remote sensing: an applied review[J]. International Journal of Remote Sensing, 2018, 39(9): 2784−2817. doi: 10.1080/01431161.2018.1433343
|
[17] |
Pádua L, Adão T, Hruška J, et al. Vineyard classification using machine learning techniques applied to RGB-UAV imagery[C]//Proceedings of 2020 IEEE International Geoscience and Remote Sensing Symposium. Waikoloa: IEEE, 2020.
|
[18] |
Juel A, Groom G B, Svenning J C, et al. Spatial application of Random Forest models for fine-scale coastal vegetation classification using object based analysis of aerial orthophoto and DEM data[J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 42: 106−114. doi: 10.1016/j.jag.2015.05.008
|
[19] |
周小成, 郑磊, 黄洪宇. 基于多特征优选的无人机可见光遥感林分类型分类[J]. 林业科学, 2021, 57(6): 24−36.
Zhou Xiaocheng, Zheng Lei, Huang Hongyu. Classification of forest stand based on multi-feature optimization of UAV visible light remote sensing[J]. Scientia Silvae Sinicae, 2021, 57(6): 24−36.
|
[20] |
Yang Shuting, Gu Lingjia, Li Xiaofeng, et al. Crop classification method based on optimal feature selection and hybrid CNN-RF networks for multi-temporal remote sensing imagery[J]. Remote Sensing, 2020, 12(19): 3119. doi: 10.3390/rs12193119
|
[21] |
Fu Bolin, Liu Man, He Hongchang, et al. Comparison of optimized object-based RF-DT algorithm and SegNet algorithm for classifying Karst wetland vegetation communities using ultra-high spatial resolution UAV data[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 104: 102553. doi: 10.1016/j.jag.2021.102553
|
[22] |
Han Kai, Wang Yunhe, Chen Hanting, et al. A survey on vision transformer[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(1): 87−110. doi: 10.1109/TPAMI.2022.3152247
|
[23] |
Liaw A, Wiener M. Classification and regression by randomForest[J]. R News, 2002, 2(3): 18−22.
|
[24] |
Breiman L. Random forests[J]. Machine Learning, 2001, 45(1): 5−32. doi: 10.1023/A:1010933404324
|
[25] |
Rodriguez-Galiano V F, Ghimire B, Rogan J, et al. An assessment of the effectiveness of a random forest classifier for land-cover classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 67: 93−104. doi: 10.1016/j.isprsjprs.2011.11.002
|
[26] |
Nguyen M H, de la Torre F. Optimal feature selection for support vector machines[J]. Pattern Recognition, 2010, 43(3): 584−591. doi: 10.1016/j.patcog.2009.09.003
|
[27] |
Morgan G R, Wang Cuizhen, Morris J T. RGB indices and canopy height modelling for mapping tidal marsh biomass from a small unmanned aerial system[J]. Remote Sensing, 2021, 13(17): 3406. doi: 10.3390/rs13173406
|
[28] |
Congalton R G, Green K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices[M]. 3rd ed. Boca Raton: CRC Press, 2019.
|