Citation: | Wu Jiahe,Wang Qingkai,Li Jinzhao, et al. Numerical study on the effect of pore on the uniaxial compressive strength of granular sea ice[J]. Haiyang Xuebao,2024, 46(6):40–50 doi: 10.12284/hyxb2024047 |
[1] |
周璇, 苏洁. 液态降水与地表气温对北极海冰开始融化时间的影响[J]. 海洋学报, 2023, 45(9): 10−24.
Zhou Xuan, Su Jie. Effect of liquid precipitation and surface air temperatureon the early melt onset of Arcticsea ice[J]. HaiyangXuebao, 2023, 45(9): 10−24.
|
[2] |
李静悦, 雷瑞波, 李娜, 等. 基于冰基浮标数据的2018—2019年北极海冰运动特性时空变化分析[J]. 海洋学报, 2023, 45(8): 31−45.
Li Jingyue, Lei Ruibo, Li Na, et al. Analysis of spatiotemporal changes in Arctic sea ice motion characteristics in 2018—2019 using ice-based buoy data[J]. HaiyangXuebao, 2023, 45(8): 31−45.
|
[3] |
郑冬梅, 王志斌, 张书颖, 等. 渤海海冰的年际和年代际变化特征与机理[J]. 海洋学报, 2015, 37(6): 12−20.
Zheng Dongmei, Wang Zhibin, Zhang Shuying, et al. Interannual and interdecadal variations of the sea ice in Bohai Sea and its mechanisms[J]. Haiyang Xuebao, 2015, 37(6): 12−20.
|
[4] |
Salomon M L, Maus S, Petrich C. Microstructure evolution of young sea ice from a Svalbard fjord using micro-CT analysis[J]. Journal of Glaciology, 2022, 68(269): 571−590. doi: 10.1017/jog.2021.119
|
[5] |
Eicken H. Automated image analysis of ice thin sections—instrumentation, methods and extraction of stereological and textural parameters[J]. Journal of Glaciology, 1993, 39(132): 341−352. doi: 10.3189/S0022143000016002
|
[6] |
Light B, Maykut G A, Grenfell T C. Effects of temperature on the microstructure of first-year Arctic sea ice[J]. Journal of Geophysical Research: Oceans, 2003, 108(C2): 3051.
|
[7] |
Perovich D K, GowA J. A quantitative description of sea ice inclusions[J]. Journal of Geophysical Research: Oceans, 1996, 101(C8): 18327−18343. doi: 10.1029/96JC01688
|
[8] |
Karulina M, Marchenko A, Karulin E, et al. Full-scale flexural strength of sea ice and freshwater ice in Spitsbergen Fjords and North-West Barents Sea[J]. Applied Ocean Research, 2019, 90: 101853. doi: 10.1016/j.apor.2019.101853
|
[9] |
TianYukui, Ji Shaopeng, Kou Ying, et al. Characterization of uniaxial compression strength for columnar saline model ice in CSSRC small ice model basin[J]. Journal of Ship Mechanics, 2020, 24(12): 1647−1656.
|
[10] |
倪宝玉, 曾令东, 熊航, 等. 海冰与波流耦合动力学的研究进展[J]. 力学学报, 2021, 53(3): 639−654.
Ni Baoyu, Zeng Lingdong, Xiong Hang, et al. Review on the interaction between sea ice and waves/currents[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 639−654.
|
[11] |
Screen J A, Francis J A. Contribution of sea-ice loss to Arctic amplification is regulated by Pacific Ocean decadal variability[J]. Nature Climate Change, 2016, 6(9): 856−860. doi: 10.1038/nclimate3011
|
[12] |
季顺迎, 王键伟, 袁奎霖, 等. 极地船舶冰区航行中冰激结构疲劳的累积损伤分析[J]. 海洋学报, 2023, 45(7): 102−109.
Ji Shunying, Wang Jianwei, Yuan Kuilin, et al. Cumulative damage analysis of ice-induced structural fatigue for polar ships navigating in ice-covered regions[J]. Haiyang Xuebao, 2023, 45(7): 102−109.
|
[13] |
Timco G W, O’Brien S. Flexural strength equation for sea ice[J]. Cold Regions Science and Technology, 1994, 22(3): 285−298. doi: 10.1016/0165-232X(94)90006-X
|
[14] |
Wang Qingkai, Li Zhaoquan, Lu Peng, et al. Flexural and compressive strength of the landfast sea ice in the Prydz Bay, East Antarctic[J]. The Cryosphere, 2022, 16(5): 1941−1961. doi: 10.5194/tc-16-1941-2022
|
[15] |
李志军, 张丽敏, 卢鹏, 等. 渤海海冰孔隙率对单轴压缩强度影响的实验研究[J]. 中国科学: 技术科学, 2011, 41(10): 1329-1335.
Li Zhijun, Zhang Limin, Lu Peng, et al. Experimental study on the effect of porosity on the uniaxial compressive strength of sea ice in Bohai Sea[J]. Scientia Sinica Technologica, 2011, 54(9): 2429-2436.
|
[16] |
陈晓东, 崔海鑫, 王安良, 等. 基于巴西盘试验的海冰拉伸强度研究[J]. 力学学报, 2020, 52(3): 625−634. doi: 10.6052/0459-1879-20-036
Chen Xiaodong, Cui Haixin, Wang Anliang, et al. Experimental study on seaice tensile strength based on Brazilian tests[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 625−634. doi: 10.6052/0459-1879-20-036
|
[17] |
Wang Anliang, Wei Zhijun, Chen Xiaodong, et al. Brief communication: full-field deformation measurement for uniaxial compression of sea ice using the digital image correlation method[J]. The Cryosphere, 2019, 13(5): 1487−1494. doi: 10.5194/tc-13-1487-2019
|
[18] |
王辉, 李勇, 曹树刚, 等. 含预制裂隙黑色页岩裂纹扩展过程及宏观破坏模式巴西劈裂试验研究[J]. 岩石力学与工程学报, 2020, 39(5): 912−926.
Wang Hui, Li Yong, Cao Shugang, et al. Brazilian splitting test study on crack propagation process and macroscopic failure mode of pre-cracked black shale[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(5): 912−926.
|
[19] |
张岩, 经纬, 经来旺, 等. 裂隙倾角及长度对岩石强度和破坏特征影响数值模拟[J]. 煤炭技术, 2023, 42(10): 106−109.
Zhang Yan, Jing Wei, Jing Laiwang, et al. Numerical simulation of effect of fracture inclination and length on strength and damage characteristics of rocks[J]. Coal Technology, 2023, 42(10): 106−109.
|
[20] |
牛永朕, 苏霈洋, 李智深, 等. 空孔对裂纹扩展行为影响规律研究[J]. 煤炭技术, 2023, 42(9): 134-139.
NiuYongzhen, Su Peiyang, Li Zhishen, et al. Research on influence law of hollow holes on crack propagationbehavior[J]. Coal Technology, 42(9): 134-139.
|
[21] |
Zong Zhi. A random pore model of sea ice for predicting its mechanical properties[J]. Cold Regions Science and Technology, 2022, 195: 103473. doi: 10.1016/j.coldregions.2021.103473
|
[22] |
Potyondy D, Ivars D M. Simulating spalling with a flat-jointed material[C]//Proceedings of the 5th International Itasca Symposium on Applied Numerical Modeling. Vienna, Austria: ITASCA, 2020.
|
[23] |
欧阳群安. 静动态冰力学特性试验及颗粒离散元法数值模拟研究[D]. 天津: 天津大学, 2019.
Ouyang Qunan. Laboratory experiments and distinct element method research on Quasi-Static and dynamic mechanical properties of ice[D]. Tianjin: TianjinUniversity, 2019.
|
[24] |
李坤蒙, 李元辉, 徐帅, 等. PFC2D数值计算模型微观参数确定方法[J]. 东北大学学报(自然科学版), 2016, 37(4): 562−566.
Li Kunmeng, Li Yuanhui, XuShuai, et al. Method to determine microscopic parameters of PFC2D numerical model[J]. Journal of Northeastern University (Natural Science), 2016, 37(4): 562−566.
|
[25] |
Potyondy D O. Simulating perforation damage with a flat-jointed bonded-particle material[C]//Proceedings of the 51st U. S. Rock Mechanics/Geomechanics Symposium. San Francisco, California, USA: ARMA, 2017.
|
[26] |
Lee H, Jeon S. An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression[J]. International Journal of Solids and Structures, 2011, 48(6): 979−999. doi: 10.1016/j.ijsolstr.2010.12.001
|
[27] |
Maus S, Schneebeli M, Wiegmann A. An X-ray micro-tomographic study of the pore space, permeability and percolation threshold of young sea ice[J]. The Cryosphere, 2021, 15(8): 4047−4072. doi: 10.5194/tc-15-4047-2021
|
[28] |
陈青青, 张煜航, 张杰, 等. 含孔隙混凝土二维细观建模方法研究[J]. 应用数学和力学, 2020, 41(2): 182−194.
Chen Qingqing, Zhang Yuhang, Zhang Jie, et al. Study on a 2D mesoscopic modeling method for concrete with voids[J]. Applied Mathematics and Mechanics, 2020, 41(2): 182−194.
|
[29] |
Schwarz J, Frederking R, Gavrillo V, et al. Standardized testing methods for measuring mechanical properties of ice[J]. Cold Regions Science and Technology, 1981, 4(3): 245−253. doi: 10.1016/0165-232X(81)90007-0
|
[30] |
Wang Qingkai, Lu P, Leppäranta M, et al. Physical properties of summer sea ice in the Pacific sector of the Arctic during 2008–2018[J]. Journal of Geophysical Research: Oceans, 2020, 125(9): e2020JC016371. doi: 10.1029/2020JC016371
|
[31] |
李志军, 孟广琳, 高树刚, 等. 辽东湾S2冰侧限剪切强度的试验研究[J]. 海洋工程, 2002, 20(1): 20−23,40. doi: 10.3969/j.issn.1005-9865.2002.01.004
Li Zhijun, Meng Guanglin, Gao Shugang, et al. Experimental study of confined shear strength of S2 ice in Liaodong Gulf[J]. The Ocean Engineering, 2002, 20(1): 20−23,40. doi: 10.3969/j.issn.1005-9865.2002.01.004
|
[32] |
Brown E T. Rock characterization, testing & monitoring: ISRM suggested methods[M]. Oxford: Pergamon Press, 1981.
|