Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 46 Issue 5
May  2024
Turn off MathJax
Article Contents
Zhang Yu,Xu Dazhi,Yu Shengbin, et al. Forecast of sea surface temperature in the South China Sea based on multi-scale deep learning model[J]. Haiyang Xuebao,2024, 46(5):27–36 doi: 10.12284/hyxb2024034
Citation: Zhang Yu,Xu Dazhi,Yu Shengbin, et al. Forecast of sea surface temperature in the South China Sea based on multi-scale deep learning model[J]. Haiyang Xuebao,2024, 46(5):27–36 doi: 10.12284/hyxb2024034

Forecast of sea surface temperature in the South China Sea based on multi-scale deep learning model

doi: 10.12284/hyxb2024034
  • Received Date: 2023-08-28
  • Rev Recd Date: 2023-11-28
  • Available Online: 2024-08-19
  • Publish Date: 2024-05-01
  • Sea surface temperature (SST) is one of the most important physical variables of the ocean, which provides the basic information of the climate system. Accurately SST forecasting system has a comprehensive and essential application. In recent years, AI-based SST forecasting methods have become popular and shown great potential. Based on the convolutional long and short-term memory neural network (ConvLSTM), this paper studies the influence of multi-scale input fields on SST prediction in the northern South China Sea. Multi-dimensional ensemble empirical mode decomposition method (MEEMD) is used to decompose the average daily SST into the spatial eigenmodes of differentiated scales. Input different combinations of eigenmodes into ConvLSTM for training and prediction experiments. Results show that when using all four SST eigenmodes, the RMSE of the predicted SST in 1−7 days is 0.4−0.8℃, decrease 0.2−1.2℃ compared with the original SST alone; the MAPE is 1%−6%, decrease 0.5%−10%; the spatial correlation coefficient is 99.5%−96.5%, improve 0.5%−3.5%. Moreover, the randomized experiments also further proved the method has a high universality. The prediction model based on deep learning needs to select the appropriate training data in order to further improve its prediction accuracy. This paper preliminarily explores the integration of artificial intelligence methods and physical concepts in SST prediction, which can provide some reference for future research.
  • loading
  • [1]
    方长芳, 张翔, 尹建平. 21世纪初海洋预报系统发展现状和趋势[J]. 海洋预报, 2013, 30(4): 93−102. doi: 10.11737/j.issn.1003-0239.2013.04.013

    Fang Changfang, Zhang Xiang, Yin Jianping. Development status and trends of ocean forecasting system in the 21st Century[J]. Marine Forecasts, 2013, 30(4): 93−102. doi: 10.11737/j.issn.1003-0239.2013.04.013
    [2]
    韩鹏, 李宇航, 揭晓蒙. 国际全球海洋环流预报系统的现状与展望[J]. 海洋预报, 2020, 37(3): 98−105. doi: 10.11737/j.issn.1003-0239.2020.03.012

    Han Peng, Li Yuhang, Jie Xiaomeng. The status and prospect of global ocean circulation forecasting system in foreign countries[J]. Marine Forecasts, 2020, 37(3): 98−105. doi: 10.11737/j.issn.1003-0239.2020.03.012
    [3]
    王兆毅, 李云, 王旭. 中国近岸海域基础预报单元海温预报指导产品研制[J]. 海洋预报, 2020, 37(4): 59−65. doi: 10.11737/j.issn.1003-0239.2020.04.007

    Wang Zhaoyi, Li Yun, Wang Xu. Development of forecast guidance product for sea temperature of basic forecast units in the Chinese coastal waters[J]. Marine Forecasts, 2020, 37(4): 59−65. doi: 10.11737/j.issn.1003-0239.2020.04.007
    [4]
    Reichstein M, Camps-Valls G, Stevens B, et al. Deep learning and process understanding for data-driven Earth system science[J]. Nature, 2019, 566(7743): 195−204. doi: 10.1038/s41586-019-0912-1
    [5]
    Li Xiaofeng, Liu Bin, Zheng Gang, et al. Deep-learning-based information mining from ocean remote-sensing imagery[J]. National Science Review, 2020, 7(10): 1584−1605. doi: 10.1093/nsr/nwaa047
    [6]
    贺圣平, 王会军, 李华, 等. 机器学习的原理及其在气候预测中的潜在应用[J]. 大气科学学报, 2021, 44(1): 26−38.

    He Shengping, Wang Huijun, Li Hua, et al. Machine learning and its potential application to climate prediction[J]. Transactions of Atmospheric Sciences, 2021, 44(1): 26−38.
    [7]
    Dong Changming, Xu Guangjun, Han Guoqing, et al. Recent developments in artificial intelligence in oceanography[J]. Ocean-Land-Atmosphere Research, 2022, 2022: 9870950.
    [8]
    Liu Yingjie, Zheng Quanan, Li Xiaofeng. Characteristics of global ocean abnormal mesoscale eddies derived from the fusion of sea surface height and temperature data by deep learning[J]. Geophysical Research Letters, 2021, 48(17): e2021GL094772. doi: 10.1029/2021GL094772
    [9]
    Xu Guangjun, Xie Wenhong, Dong Changming, et al. Application of three deep learning schemes into oceanic eddy detection[J]. Frontiers in Marine Science, 2021, 8: 672334. doi: 10.3389/fmars.2021.672334
    [10]
    Zhang Xudong, Zhang Tao, Li Xiaofeng. Satellite-data-driven propagation speed model for internal solitary waves in the shallow and deep oceans[C]//Proceedings of 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. Brussels: IEEE, 2021: 7402−7405.
    [11]
    Zhang Xudong, Li Xiaofeng, Zheng Quanan. A machine-learning model for forecasting internal wave propagation in the Andaman Sea[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 3095−3106. doi: 10.1109/JSTARS.2021.3063529
    [12]
    Xiao Changjiang, Chen Nengcheng, Hu Chuli, et al. Short and mid-term sea surface temperaure prediction using time-series satellite data and LSTM-AdaBoost combination approach[J]. Remote Sensing of Environment, 2019, 233: 111358. doi: 10.1016/j.rse.2019.111358
    [13]
    Wei Li, Guan Lei, Qu Liqin, et al. Prediction of sea surface temperature in the China seas based on long short-term memory neural networks[J]. Remote Sensing, 2020, 12(17): 2697. doi: 10.3390/rs12172697
    [14]
    Yu Xuan, Shi Suixiang, Xu Lingyu, et al. A novel method for sea surface temperature prediction based on deep learning[J]. Mathematical Problems in Engineering, 2020, 2020: 6387173.
    [15]
    Zhou Shuyi, Xie Wenhong, Lu Yuxiang, et al. ConvLSTM-based wave forecasts in the South and East China Seas[J]. Frontiers in Marine Science, 2021, 8: 680079. doi: 10.3389/fmars.2021.680079
    [16]
    Liang XiangSan, Xu Fen, Rong Yineng, et al. El Niño Modoki can be mostly predicted more than 10 years ahead of time[J]. Scientific Reports, 2021, 11(1): 17860. doi: 10.1038/s41598-021-97111-y
    [17]
    Sun Wenjin, Zhou Shuyi, Yang Jingsong, et al. Artificial intelligence forecasting of marine heatwaves in the South China sea using a combined U-Net and ConvLSTM system[J]. Remote Sensing, 2023, 15(16): 4068. doi: 10.3390/rs15164068
    [18]
    Zhou Lu, Zhang Ronghua. A self-attention–based neural network for three-dimensional multivariate modeling and its skillful ENSO predictions[J]. Science Advances, 2023, 9(10): eadf2827. doi: 10.1126/sciadv.adf2827
    [19]
    Guo Yanan, Cao Xiaoqun, Liu Bainian, et al. El Niño index prediction using deep learning with ensemble empirical mode decomposition[J]. Symmetry, 2020, 12(6): 893, doi: 10.3390/sym12060893
    [20]
    Zheng Gang, Li Xiaofeng, Zhang Ronghua, et al. Purely satellite data-driven deep learning forecast of complicated tropical instability waves[J]. Science Advances, 2020, 6(29): eaba1482, doi: 10.1126/sciadv.aba1482
    [21]
    Zhou Lu, Zhang Ronghua. A hybrid neural network model for ENSO prediction in combination with principal oscillation pattern analyses[J]. Advances in Atmospheric Sciences, 2022, 39(6): 889−902, doi: 10.1007/s00376-021-1368-4
    [22]
    Gao Chuan, Zhou Lu, Zhang Ronghua. A transformer-based deep learning model for successful predictions of the 2021 second-year La Niña condition[J]. Geophysical Research Letters, 2023, 50(12): e2023GL104034, doi: 10.1029/2023GL104034
    [23]
    Wan Zhongyi, Sapsis T P. Machine learning the kinematics of spherical particles in fluid flows[J]. Journal of Fluid Mechanics, 2018, 857: R2. doi: 10.1017/jfm.2018.797
    [24]
    Mashayek A, Reynard N, Zhai Fangming, et al. Deep ocean learning of small scale turbulence[J]. Geophysical Research Letters, 2022, 49(15): e2022GL098039. doi: 10.1029/2022GL098039
    [25]
    Zhu Yuchao, Zhang Ronghua, Moum J N, et al. Physics-informed deep-learning parameterization of ocean vertical mixing improves climate simulations[J]. National Science Review, 2022, 9(8): nwac044. doi: 10.1093/nsr/nwac044
    [26]
    Zhang Qin, Wang Hui, Dong Junyu, et al. Prediction of sea surface temperature using long short-term memory[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10): 1745−1749. doi: 10.1109/LGRS.2017.2733548
    [27]
    Xiao Changjiang, Chen Nengcheng, Hu Chuli, et al. A spatiotemporal deep learning model for sea surface temperature field prediction using time-series satellite data[J]. Environmental Modelling & Software, 2019, 120: 104502.
    [28]
    Sarkar P P, Janardhan P, Roy P. Prediction of sea surface temperatures using deep learning neural networks[J]. SN Applied Sciences, 2020, 2(8): 1458. doi: 10.1007/s42452-020-03239-3
    [29]
    Xie Jiang, Zhang Jiyuan, Yu Jie, et al. An adaptive scale sea surface temperature predicting method based on deep learning with attention mechanism[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(5): 740−744. doi: 10.1109/LGRS.2019.2931728
    [30]
    Hao Peng, Li Shuang, Song Jinbao, et al. Prediction of sea surface temperature in the South China sea based on deep learning[J]. Remote Sensing, 2023, 15(6): 1656. doi: 10.3390/rs15061656
    [31]
    Wei Li, Guan Lei. Seven-day sea surface temperature prediction using a 3DConv-LSTM model[J]. Frontiers in Marine Science, 2022, 9: 905848. doi: 10.3389/fmars.2022.905848
    [32]
    Good S, Fiedler E, Mao Chongyuan, et al. The current configuration of the OSTIA system for operational production of foundation sea surface temperature and ice concentration analyses[J]. Remote Sensing, 2020, 12(4): 720. doi: 10.3390/rs12040720
    [33]
    Wu Zhaohua, Huang N E, Chen Xianyao. The multi-dimensional ensemble empirical mode decomposition method[J]. Advances in Adaptive Data Analysis, 2009, 1(3): 339−372. doi: 10.1142/S1793536909000187
    [34]
    Fang Guohong, Chen Haiying, Wei Zexun, et al. Trends and interannual variability of the South China Sea surface winds, surface height, and surface temperature in the recent decade[J]. Journal of Geophysical Research:Oceans, 2006, 111(C11): C11S16, doi: 10.1029/2005jc003276
    [35]
    Wang Chunzai, Wang Weiqiang, Wang Dongxiao, et al. Interannual variability of the South China Sea associated with El Niño[J]. Journal of Geophysical Research:Oceans, 2006, 111(C3): C03023, doi: 10.1029/2005jc003333
    [36]
    Chow C H, Liu Qinyu. Eddy effects on sea surface temperature and sea surface wind in the continental slope region of the northern South China Sea[J]. Geophysical Research Letters, 2012, 39(2): L02601, doi: 10.1029/2011gl050230
    [37]
    Liu Yingjie, Yu Lisan, Chen Ge. Characterization of sea surface temperature and air‐sea heat flux anomalies associated with mesoscale eddies in the South China Sea[J]. Journal of Geophysical Research:Oceans, 2020, 125(4): e2019JC015470, doi: 10.1029/2019jc015470
    [38]
    Shi Xingjian, Chen Zhourong, Wang Hao, et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting[C]. In Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal, MIT Press, 2015: 802−810.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views (82) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return