Citation: | Zhang Yu,Xu Dazhi,Yu Shengbin, et al. Forecast of sea surface temperature in the South China Sea based on multi-scale deep learning model[J]. Haiyang Xuebao,2024, 46(5):27–36 doi: 10.12284/hyxb2024034 |
[1] |
方长芳, 张翔, 尹建平. 21世纪初海洋预报系统发展现状和趋势[J]. 海洋预报, 2013, 30(4): 93−102. doi: 10.11737/j.issn.1003-0239.2013.04.013
Fang Changfang, Zhang Xiang, Yin Jianping. Development status and trends of ocean forecasting system in the 21st Century[J]. Marine Forecasts, 2013, 30(4): 93−102. doi: 10.11737/j.issn.1003-0239.2013.04.013
|
[2] |
韩鹏, 李宇航, 揭晓蒙. 国际全球海洋环流预报系统的现状与展望[J]. 海洋预报, 2020, 37(3): 98−105. doi: 10.11737/j.issn.1003-0239.2020.03.012
Han Peng, Li Yuhang, Jie Xiaomeng. The status and prospect of global ocean circulation forecasting system in foreign countries[J]. Marine Forecasts, 2020, 37(3): 98−105. doi: 10.11737/j.issn.1003-0239.2020.03.012
|
[3] |
王兆毅, 李云, 王旭. 中国近岸海域基础预报单元海温预报指导产品研制[J]. 海洋预报, 2020, 37(4): 59−65. doi: 10.11737/j.issn.1003-0239.2020.04.007
Wang Zhaoyi, Li Yun, Wang Xu. Development of forecast guidance product for sea temperature of basic forecast units in the Chinese coastal waters[J]. Marine Forecasts, 2020, 37(4): 59−65. doi: 10.11737/j.issn.1003-0239.2020.04.007
|
[4] |
Reichstein M, Camps-Valls G, Stevens B, et al. Deep learning and process understanding for data-driven Earth system science[J]. Nature, 2019, 566(7743): 195−204. doi: 10.1038/s41586-019-0912-1
|
[5] |
Li Xiaofeng, Liu Bin, Zheng Gang, et al. Deep-learning-based information mining from ocean remote-sensing imagery[J]. National Science Review, 2020, 7(10): 1584−1605. doi: 10.1093/nsr/nwaa047
|
[6] |
贺圣平, 王会军, 李华, 等. 机器学习的原理及其在气候预测中的潜在应用[J]. 大气科学学报, 2021, 44(1): 26−38.
He Shengping, Wang Huijun, Li Hua, et al. Machine learning and its potential application to climate prediction[J]. Transactions of Atmospheric Sciences, 2021, 44(1): 26−38.
|
[7] |
Dong Changming, Xu Guangjun, Han Guoqing, et al. Recent developments in artificial intelligence in oceanography[J]. Ocean-Land-Atmosphere Research, 2022, 2022: 9870950.
|
[8] |
Liu Yingjie, Zheng Quanan, Li Xiaofeng. Characteristics of global ocean abnormal mesoscale eddies derived from the fusion of sea surface height and temperature data by deep learning[J]. Geophysical Research Letters, 2021, 48(17): e2021GL094772. doi: 10.1029/2021GL094772
|
[9] |
Xu Guangjun, Xie Wenhong, Dong Changming, et al. Application of three deep learning schemes into oceanic eddy detection[J]. Frontiers in Marine Science, 2021, 8: 672334. doi: 10.3389/fmars.2021.672334
|
[10] |
Zhang Xudong, Zhang Tao, Li Xiaofeng. Satellite-data-driven propagation speed model for internal solitary waves in the shallow and deep oceans[C]//Proceedings of 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. Brussels: IEEE, 2021: 7402−7405.
|
[11] |
Zhang Xudong, Li Xiaofeng, Zheng Quanan. A machine-learning model for forecasting internal wave propagation in the Andaman Sea[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 3095−3106. doi: 10.1109/JSTARS.2021.3063529
|
[12] |
Xiao Changjiang, Chen Nengcheng, Hu Chuli, et al. Short and mid-term sea surface temperaure prediction using time-series satellite data and LSTM-AdaBoost combination approach[J]. Remote Sensing of Environment, 2019, 233: 111358. doi: 10.1016/j.rse.2019.111358
|
[13] |
Wei Li, Guan Lei, Qu Liqin, et al. Prediction of sea surface temperature in the China seas based on long short-term memory neural networks[J]. Remote Sensing, 2020, 12(17): 2697. doi: 10.3390/rs12172697
|
[14] |
Yu Xuan, Shi Suixiang, Xu Lingyu, et al. A novel method for sea surface temperature prediction based on deep learning[J]. Mathematical Problems in Engineering, 2020, 2020: 6387173.
|
[15] |
Zhou Shuyi, Xie Wenhong, Lu Yuxiang, et al. ConvLSTM-based wave forecasts in the South and East China Seas[J]. Frontiers in Marine Science, 2021, 8: 680079. doi: 10.3389/fmars.2021.680079
|
[16] |
Liang XiangSan, Xu Fen, Rong Yineng, et al. El Niño Modoki can be mostly predicted more than 10 years ahead of time[J]. Scientific Reports, 2021, 11(1): 17860. doi: 10.1038/s41598-021-97111-y
|
[17] |
Sun Wenjin, Zhou Shuyi, Yang Jingsong, et al. Artificial intelligence forecasting of marine heatwaves in the South China sea using a combined U-Net and ConvLSTM system[J]. Remote Sensing, 2023, 15(16): 4068. doi: 10.3390/rs15164068
|
[18] |
Zhou Lu, Zhang Ronghua. A self-attention–based neural network for three-dimensional multivariate modeling and its skillful ENSO predictions[J]. Science Advances, 2023, 9(10): eadf2827. doi: 10.1126/sciadv.adf2827
|
[19] |
Guo Yanan, Cao Xiaoqun, Liu Bainian, et al. El Niño index prediction using deep learning with ensemble empirical mode decomposition[J]. Symmetry, 2020, 12(6): 893, doi: 10.3390/sym12060893
|
[20] |
Zheng Gang, Li Xiaofeng, Zhang Ronghua, et al. Purely satellite data-driven deep learning forecast of complicated tropical instability waves[J]. Science Advances, 2020, 6(29): eaba1482, doi: 10.1126/sciadv.aba1482
|
[21] |
Zhou Lu, Zhang Ronghua. A hybrid neural network model for ENSO prediction in combination with principal oscillation pattern analyses[J]. Advances in Atmospheric Sciences, 2022, 39(6): 889−902, doi: 10.1007/s00376-021-1368-4
|
[22] |
Gao Chuan, Zhou Lu, Zhang Ronghua. A transformer-based deep learning model for successful predictions of the 2021 second-year La Niña condition[J]. Geophysical Research Letters, 2023, 50(12): e2023GL104034, doi: 10.1029/2023GL104034
|
[23] |
Wan Zhongyi, Sapsis T P. Machine learning the kinematics of spherical particles in fluid flows[J]. Journal of Fluid Mechanics, 2018, 857: R2. doi: 10.1017/jfm.2018.797
|
[24] |
Mashayek A, Reynard N, Zhai Fangming, et al. Deep ocean learning of small scale turbulence[J]. Geophysical Research Letters, 2022, 49(15): e2022GL098039. doi: 10.1029/2022GL098039
|
[25] |
Zhu Yuchao, Zhang Ronghua, Moum J N, et al. Physics-informed deep-learning parameterization of ocean vertical mixing improves climate simulations[J]. National Science Review, 2022, 9(8): nwac044. doi: 10.1093/nsr/nwac044
|
[26] |
Zhang Qin, Wang Hui, Dong Junyu, et al. Prediction of sea surface temperature using long short-term memory[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10): 1745−1749. doi: 10.1109/LGRS.2017.2733548
|
[27] |
Xiao Changjiang, Chen Nengcheng, Hu Chuli, et al. A spatiotemporal deep learning model for sea surface temperature field prediction using time-series satellite data[J]. Environmental Modelling & Software, 2019, 120: 104502.
|
[28] |
Sarkar P P, Janardhan P, Roy P. Prediction of sea surface temperatures using deep learning neural networks[J]. SN Applied Sciences, 2020, 2(8): 1458. doi: 10.1007/s42452-020-03239-3
|
[29] |
Xie Jiang, Zhang Jiyuan, Yu Jie, et al. An adaptive scale sea surface temperature predicting method based on deep learning with attention mechanism[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(5): 740−744. doi: 10.1109/LGRS.2019.2931728
|
[30] |
Hao Peng, Li Shuang, Song Jinbao, et al. Prediction of sea surface temperature in the South China sea based on deep learning[J]. Remote Sensing, 2023, 15(6): 1656. doi: 10.3390/rs15061656
|
[31] |
Wei Li, Guan Lei. Seven-day sea surface temperature prediction using a 3DConv-LSTM model[J]. Frontiers in Marine Science, 2022, 9: 905848. doi: 10.3389/fmars.2022.905848
|
[32] |
Good S, Fiedler E, Mao Chongyuan, et al. The current configuration of the OSTIA system for operational production of foundation sea surface temperature and ice concentration analyses[J]. Remote Sensing, 2020, 12(4): 720. doi: 10.3390/rs12040720
|
[33] |
Wu Zhaohua, Huang N E, Chen Xianyao. The multi-dimensional ensemble empirical mode decomposition method[J]. Advances in Adaptive Data Analysis, 2009, 1(3): 339−372. doi: 10.1142/S1793536909000187
|
[34] |
Fang Guohong, Chen Haiying, Wei Zexun, et al. Trends and interannual variability of the South China Sea surface winds, surface height, and surface temperature in the recent decade[J]. Journal of Geophysical Research:Oceans, 2006, 111(C11): C11S16, doi: 10.1029/2005jc003276
|
[35] |
Wang Chunzai, Wang Weiqiang, Wang Dongxiao, et al. Interannual variability of the South China Sea associated with El Niño[J]. Journal of Geophysical Research:Oceans, 2006, 111(C3): C03023, doi: 10.1029/2005jc003333
|
[36] |
Chow C H, Liu Qinyu. Eddy effects on sea surface temperature and sea surface wind in the continental slope region of the northern South China Sea[J]. Geophysical Research Letters, 2012, 39(2): L02601, doi: 10.1029/2011gl050230
|
[37] |
Liu Yingjie, Yu Lisan, Chen Ge. Characterization of sea surface temperature and air‐sea heat flux anomalies associated with mesoscale eddies in the South China Sea[J]. Journal of Geophysical Research:Oceans, 2020, 125(4): e2019JC015470, doi: 10.1029/2019jc015470
|
[38] |
Shi Xingjian, Chen Zhourong, Wang Hao, et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting[C]. In Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal, MIT Press, 2015: 802−810.
|