Citation: | Gu Rong,Zhang Dong,Qian Linfeng, et al. Refined remote sensing classification of Yancheng coastal wetland considering tide-level changes and vegetation phenological characteristics on the GEE platform[J]. Haiyang Xuebao,2024, 46(5):103–115 doi: 10.12284/hyxb2024030 |
[1] |
解雪峰, 孙晓敏, 吴涛, 等. 互花米草入侵对滨海湿地生态系统的影响研究进展[J]. 应用生态学报, 2020, 31(6): 2119−2128.
Xie Xuefeng, Sun Xiaomin, Wu Tao, et al. Impacts of Spartina alterniflora invasion on coastal wetland ecosystem: Advances and prospects[J]. Chinese Journal of Applied Ecology, 2020, 31(6): 2119−2128.
|
[2] |
Kirwan M L, Megonigal J P. Tidal wetland stability in the face of human impacts and sea-level rise[J]. Nature, 2013, 504(7478): 53−60. doi: 10.1038/nature12856
|
[3] |
Gabler C A, Osland M J, Grace J B, et al. Macroclimatic change expected to transform coastal wetland ecosystems this century[J]. Nature Climate Change, 2017, 7(2): 142−147. doi: 10.1038/nclimate3203
|
[4] |
刘瑞清, 李加林, 孙超, 等. 基于Sentinel-2遥感时间序列植被物候特征的盐城滨海湿地植被分类[J]. 地理学报, 2021, 76(7): 1680−1692. doi: 10.11821/dlxb202107008
Liu Ruiqing, Li Jialin, Sun Chao, et al. Classification of Yancheng coastal wetland vegetation based on vegetation phenological characteristics derived from Sentinel-2 time-series[J]. Acta Geographica Sinica, 2021, 76(7): 1680−1692. doi: 10.11821/dlxb202107008
|
[5] |
Chung C H. Forty years of ecological engineering with Spartina plantations in China[J]. Ecological Engineering, 2006, 27(1): 49−57. doi: 10.1016/j.ecoleng.2005.09.012
|
[6] |
Tang Long, Gao Yang, Wang Chenghuan, et al. A plant invader declines through its modification to habitats: A case study of a 16-year chronosequence of Spartina alterniflora invasion in a salt marsh[J]. Ecological Engineering, 2012, 49: 181−185. doi: 10.1016/j.ecoleng.2012.08.024
|
[7] |
Zeng Jing, Sun Yonghua, Cao Peirun, et al. A phenology-based vegetation index classification (PVC) algorithm for coastal salt marshes using Landsat 8 images[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 110: 102776. doi: 10.1016/j.jag.2022.102776
|
[8] |
Murray N J, Phinn S R, Clemens R S, et al. Continental scale mapping of tidal flats across East Asia using the Landsat archive[J]. Remote Sensing, 2012, 4(11): 3417−3426. doi: 10.3390/rs4113417
|
[9] |
张晨宇, 陈沈良, 李鹏, 等. 现行黄河口保护区典型湿地植被时空动态遥感监测[J]. 海洋学报, 2022, 44(1): 125−136.
Zhang Chenyu, Chen Shenliang, Li Peng, et al. Spatiotemporal dynamic remote sensing monitoring of typical wetland vegetation in the Current Huanghe River Estuary Reserve[J]. Haiyang Xuebao, 2022, 44(1): 125−136.
|
[10] |
Zhang Zhen, Xu Nan, Li Yangfan, et al. Sub-continental-scale mapping of tidal wetland composition for East Asia: A novel algorithm integrating satellite tide-level and phenological features[J]. Remote Sensing of Environment, 2022, 269: 112799. doi: 10.1016/j.rse.2021.112799
|
[11] |
Dong Jinwei, Xiao Xiangming, Menarguez M A, et al. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine[J]. Remote Sensing of Environment, 2016, 185: 142−154. doi: 10.1016/j.rse.2016.02.016
|
[12] |
程丽娜, 钟才荣, 李晓燕, 等. Sentinel-2密集时间序列数据和Google Earth Engine的潮间带湿地快速自动分类[J]. 遥感学报, 2022, 26(2): 348−357. doi: 10.11834/jrs.20211311
Cheng Li’na, Zhong Cairong, Li Xiaoyan, et al. Rapid and automatic classification of intertidal wetlands based on intensive time series Sentinel-2 images and Google Earth Engine[J]. National Remote Sensing Bulletin, 2022, 26(2): 348−357. doi: 10.11834/jrs.20211311
|
[13] |
Sun Chao, Li Jialin, Liu Yongchao, et al. Tracking annual changes in the distribution and composition of saltmarsh vegetation on the Jiangsu coast of China using Landsat time series-based phenological parameters[J]. Remote Sensing of Environment, 2023, 284: 113370. doi: 10.1016/j.rse.2022.113370
|
[14] |
Jia Mingming, Wang Zongming, Mao Dehua, et al. Rapid, robust, and automated mapping of tidal flats in China using time series Sentinel-2 images and Google Earth Engine[J]. Remote Sensing of Environment, 2021, 255: 112285. doi: 10.1016/j.rse.2021.112285
|
[15] |
Sun Chao, Liu Yongxue, Zhao Saishuai, et al. Classification mapping and species identification of salt marshes based on a short-time interval NDVI time-series from HJ-1 optical imagery[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 45: 27−41. doi: 10.1016/j.jag.2015.10.008
|
[16] |
王敏钰, 罗毅, 张正阳, 等. 植被物候参数遥感提取与验证方法研究进展[J]. 遥感学报, 2022, 26(3): 431−455. doi: 10.11834/j.issn.1007-4619.2022.3.ygxb202203002
Wang Minyu, Luo Yi, Zhang Zhengyang, et al. Recent advances in remote sensing of vegetation phenology: Retrieval algorithm and validation strategy[J]. National Remote Sensing Bulletin, 2022, 26(3): 431−455. doi: 10.11834/j.issn.1007-4619.2022.3.ygxb202203002
|
[17] |
Descals A, Verger A, Yin Gaofei, et al. Improved estimates of arctic land surface phenology using sentinel-2 time series[J]. Remote Sensing, 2020, 12(22): 3738. doi: 10.3390/rs12223738
|
[18] |
Wu Nan, Shi Runhe, Zhuo Wei, et al. A classification of tidal flat wetland vegetation combining phenological features with Google earth engine[J]. Remote Sensing, 2021, 13(3): 443. doi: 10.3390/rs13030443
|
[19] |
薛朝辉, 钱思羽. 融合Landsat 8与Sentinel-2数据的红树林物候信息提取与分类[J]. 遥感学报, 2022, 26(6): 1121−1142. doi: 10.11834/jrs.20221448
Xue Zhaohui, Qian Siyu. Fusion of Landsat 8 and Sentinel-2 data for mangrove phenology information extraction and classification[J]. National Remote Sensing Bulletin, 2022, 26(6): 1121−1142. doi: 10.11834/jrs.20221448
|
[20] |
Savitzky A, Golay M J E. Smoothing and differentiation of data by simplified least squares procedures[J]. Analytical Chemistry, 1964, 36(8): 1627−1639. doi: 10.1021/ac60214a047
|
[21] |
王明, 刘正佳, 陈元琰. 基于Sentinel-2波段/产品的图像云检测效果对比研究[J]. 遥感技术与应用, 2020, 35(5): 1167−1177.
Wang Ming, Liu Zhengjia, Chen Yuanyan. Comparsions of image cloud detection effect based on Sentinel-2 bands/products[J]. Remote Sensing Technology and Application, 2020, 35(5): 1167−1177.
|
[22] |
Coluzzi R, Imbrenda V, Lanfredi M, et al. A first assessment of the Sentinel-2 Level 1-C cloud mask product to support informed surface analyses[J]. Remote Sensing of Environment, 2018, 217: 426−443. doi: 10.1016/j.rse.2018.08.009
|
[23] |
陈君, 王义刚, 张忍顺, 等. 江苏岸外辐射沙脊群东沙稳定性研究[J]. 海洋工程, 2007, 25(1): 105−113. doi: 10.3969/j.issn.1005-9865.2007.01.017
Chen Jun, Wang Yigang, Zhang Renshun, et al. Stability study on the Dongsha Sandbanks in submarine radial sand ridges field off Jiangsu Coast[J]. The Ocean Engineering, 2007, 25(1): 105−113. doi: 10.3969/j.issn.1005-9865.2007.01.017
|
[24] |
陈玮彤, 张东, 施顺杰, 等. 江苏中部淤泥质海岸岸线变化遥感监测研究[J]. 海洋学报, 2017, 39(5): 138−148.
Chen Weitong, Zhang Dong, Shi Shunjie, et al. Research on monitoring coastline changes by remote sensing in muddy coast, central Jiangsu coast[J]. Haiyang Xuebao, 2017, 39(5): 138−148.
|
[25] |
Zhu Zhe, Woodcock C E. Object-based cloud and cloud shadow detection in Landsat imagery[J]. Remote Sensing of Environment, 2012, 118: 83−94. doi: 10.1016/j.rse.2011.10.028
|
[26] |
Zhu Zhe, Wang Shixiong, Woodcock C E. Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4-7, 8, and Sentinel 2 images[J]. Remote Sensing of Environment, 2015, 159: 269−277. doi: 10.1016/j.rse.2014.12.014
|
[27] |
Shi Qiu, Zhu Zhe, He Binbin. Fmask 4.0: Improved cloud and cloud shadow detection in Landsats 4-8 and Sentinel-2 imagery[J]. Remote Sensing of Environment, 2019, 231: 111205. doi: 10.1016/j.rse.2019.05.024
|
[28] |
Zhang Yanli, Song Yuyu, Ye Changqing, et al. An integrated approach to reconstructing snow cover under clouds and cloud shadows on Sentinel-2 Time-Series images in a mountainous area[J]. Journal of Hydrology, 2023, 619: 129264. doi: 10.1016/j.jhydrol.2023.129264
|
[29] |
Sun Lin, Liu Xinyan, Yang Yikun, et al. A cloud shadow detection method combined with cloud height iteration and spectral analysis for Landsat 8 OLI data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 138: 193−207. doi: 10.1016/j.isprsjprs.2018.02.016
|
[30] |
Steinbach S, Hentschel E, Hentze K, et al. Automatization and evaluation of a remote sensing-based indicator for wetland health assessment in East Africa on national and local scales[J]. Ecological Informatics, 2023, 75: 102032. doi: 10.1016/j.ecoinf.2023.102032
|
[31] |
于信芳, 庄大方. 基于MODIS NDVI数据的东北森林物候期监测[J]. 资源科学, 2006, 28(4): 111−117. doi: 10.3321/j.issn:1007-7588.2006.04.023
Yu Xinfang, Zhuang Dafang. Monitoring forest phenophases of northeast China based on MODIS NDVI data[J]. Resources Science, 2006, 28(4): 111−117. doi: 10.3321/j.issn:1007-7588.2006.04.023
|
[32] |
Jönsson P, Eklundh L. TIMESAT-a program for analyzing time-series of satellite sensor data[J]. Computers & Geosciences, 2004, 30(8): 833−845.
|
[33] |
White M A, Thornton P E, Running S W. A continental phenology model for monitoring vegetation responses to interannual climatic variability[J]. Global Biogeochemical Cycles, 1997, 11(2): 217−234. doi: 10.1029/97GB00330
|
[34] |
Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62−66. doi: 10.1109/TSMC.1979.4310076
|
[35] |
Xing Huaqiao, Niu Jingge, Feng Yongyu, et al. A coastal wetlands mapping approach of Yellow River Delta with a hierarchical classification and optimal feature selection framework[J]. CATENA, 2023, 223: 106897. doi: 10.1016/j.catena.2022.106897
|