Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 46 Issue 5
May  2024
Turn off MathJax
Article Contents
Gong Yaping,Zhong Wenli,Wang Xiaoyu, et al. Variations of the Atlantic Water and Pacific Winter Water under the influence of the shifting Beaufort Gyre in the western Arctic Ocean[J]. Haiyang Xuebao,2024, 46(5):1–15 doi: 10.12284/hyxb2024028
Citation: Gong Yaping,Zhong Wenli,Wang Xiaoyu, et al. Variations of the Atlantic Water and Pacific Winter Water under the influence of the shifting Beaufort Gyre in the western Arctic Ocean[J]. Haiyang Xuebao,2024, 46(5):1–15 doi: 10.12284/hyxb2024028

Variations of the Atlantic Water and Pacific Winter Water under the influence of the shifting Beaufort Gyre in the western Arctic Ocean

doi: 10.12284/hyxb2024028
  • Received Date: 2023-07-24
  • Rev Recd Date: 2023-11-21
  • Available Online: 2024-03-29
  • Publish Date: 2024-05-01
  • The Chukchi Borderland served as the critical gateway for the inflow of Atlantic Water (AW, which is the most important heat storage layer in the Arctic Ocean) into the Canada Basin in the western Arctic Ocean. One of the key issues is how the AW and Pacific Winter Water (PWW) interacts in this complex topography region. The answer to this question will shed light on the important role of AW in the Arctic Ocean. In this study, based on the multi-sources’ quality controlled hydrographic data during 1999−2021, the variation of AW, PWW and the double-diffusive staircases in the Chukchi Borderland are studied in details. We identified three anomalous warm events of AW that occurred in year 2000, 2012 and 2018 with the maximum potential temperature over 1℃. The vertical averaged heat content between the PWW and AW shows a warming trend in the central and eastern region of the Chukchi Borderland. The major reason for this is the warming of PWW. The depth of PWW is more sensitive to the shifting of the Beaufort Gyre (BG) than that of the AW. The combined changes of PWW and AW lead to the variation of double-diffusive staircases, which show a regime shift from large to small thickness and to largely decayed in the Canada Basin. Our results suggest that the major mechanism for this transition is the cooling of AW along with the stronger stratification that restricts the vertical mixing for all.
  • loading
  • [1]
    Woodgate R A, Aagaard K, Muench R D, et al. The Arctic Ocean boundary current along the Eurasian slope and the adjacent Lomonosov Ridge: water mass properties, transports and transformations from moored instruments[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2001, 48(8): 1757−1792. doi: 10.1016/S0967-0637(00)00091-1
    [2]
    Aksenov Y, Ivanov V V, Nurser A J G, et al. The arctic circumpolar boundary current[J]. Journal of Geophysical Research: Oceans, 2011, 116(C9): C09017.
    [3]
    Rudels B, Korhonen M, Schauer U, et al. Circulation and transformation of Atlantic water in the Eurasian Basin and the contribution of the Fram Strait inflow branch to the Arctic Ocean heat budget[J]. Progress in Oceanography, 2015, 132: 128−152. doi: 10.1016/j.pocean.2014.04.003
    [4]
    Polyakov I V, Alexeev V A, Ashik I M, et al. Fate of early 2000s Arctic warm water pulse[J]. Bulletin of the American Meteorological Society, 2011, 92(5): 561−566. doi: 10.1175/2010BAMS2921.1
    [5]
    Karcher M, Smith J N, Kauker F, et al. Recent changes in Arctic Ocean circulation revealed by iodine-129 observations and modeling[J]. Journal of Geophysical Research: Oceans, 2012, 117(C8): C08007.
    [6]
    Rudels B. Arctic Ocean circulation, processes and water masses: a description of observations and ideas with focus on the period prior to the International Polar Year 2007–2009[J]. Progress in Oceanography, 2015, 132: 22−67. doi: 10.1016/j.pocean.2013.11.006
    [7]
    Karcher M J, Oberhuber J M. Pathways and modification of the upper and intermediate waters of the Arctic Ocean[J]. Journal of Geophysical Research: Oceans, 2002, 107(C6): 3049.
    [8]
    Karcher M, Kauker F, Gerdes R, et al. On the dynamics of Atlantic Water circulation in the Arctic Ocean[J]. Journal of Geophysical Research: Oceans, 2007, 112(C4): C04S02.
    [9]
    Wefing A M, Casacuberta N, Christl M, et al. Circulation timescales of Atlantic Water in the Arctic Ocean determined from anthropogenic radionuclides[J]. Ocean Science, 2021, 17(1): 111−129. doi: 10.5194/os-17-111-2021
    [10]
    Carmack E, Polyakov I, Padman L, et al. Toward quantifying the increasing role of oceanic heat in sea ice loss in the new Arctic[J]. Bulletin of the American Meteorological Society, 2015, 96(12): 2079−2105. doi: 10.1175/BAMS-D-13-00177.1
    [11]
    Turner J S. The melting of ice in the Arctic Ocean: the influence of double-diffusive transport of heat from below[J]. Journal of Physical Oceanography, 2010, 40(1): 249−256. doi: 10.1175/2009JPO4279.1
    [12]
    Polyakov I V, Pnyushkov A V, Alkire M B, et al. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean[J]. Science, 2017, 356(6335): 285−291. doi: 10.1126/science.aai8204
    [13]
    Overland J E, Wood K R, Wang M Y. Warm Arctic—cold continents: climate impacts of the newly open Arctic Sea[J]. Polar Research, 2011, 30(1): 15787. doi: 10.3402/polar.v30i0.15787
    [14]
    Timmermans M L, Marshall J. Understanding Arctic Ocean circulation: a review of ocean dynamics in a changing climate[J]. Journal of Geophysical Research: Oceans, 2020, 125(4): e2018JC014378. doi: 10.1029/2018JC014378
    [15]
    Aagaard K, Swift J H, Carmack E C. Thermohaline circulation in the Arctic Mediterranean seas[J]. Journal of Geophysical Research: Oceans, 1985, 90(C3): 4833−4846. doi: 10.1029/JC090iC03p04833
    [16]
    Nøst O A, Isachsen P E. The large-scale time-mean ocean circulation in the Nordic Seas and Arctic Ocean estimated from simplified dynamics[J]. Journal of Marine Research, 2003, 61(2): 175−210. doi: 10.1357/002224003322005069
    [17]
    Woodgate R A, Aagaard K, Swift J H, et al. Atlantic water circulation over the Mendeleev Ridge and Chukchi Borderland from thermohaline intrusions and water mass properties[J]. Journal of Geophysical Research: Oceans, 2007, 112(C2): C02005.
    [18]
    Polyakov I V, Rippeth T P, Fer I, et al. Intensification of near‐surface currents and shear in the Eastern Arctic Ocean[J]. Geophysical Research Letters, 2020, 47(16): e2020GL089469. doi: 10.1029/2020GL089469
    [19]
    Zhao Jinping, Gao Guoping, Jiao Yutian. Warming in Arctic intermediate and deep waters around Chukchi Plateau and its adjacent regions in 1999[J]. Science in China Series D: Earth Sciences, 2005, 48(8): 1312−1320. doi: 10.1360/02yd0504
    [20]
    Zhong Wenli, Zhao Jinping. Deepening of the Atlantic Water core in the Canada Basin in 2003–11[J]. Journal of Physical Oceanography, 2014, 44(9): 2353−2369. doi: 10.1175/JPO-D-13-084.1
    [21]
    Richards A E, Johnson H L, Lique C. Spatial and temporal variability of Atlantic Water in the Arctic from 40 years of observations[J]. Journal of Geophysical Research: Oceans, 2022, 127(9): e2021JC018358. doi: 10.1029/2021JC018358
    [22]
    Ménesguen C, Lique C, Caspar-Cohen Z. Density staircases are disappearing in the Canada Basin of the Arctic Ocean[J]. Journal of Geophysical Research: Oceans, 2022, 127(11): e2022JC018877. doi: 10.1029/2022JC018877
    [23]
    Polyakov I V, Pnyushkov A V, Timokhov L A. Warming of the intermediate atlantic water of the Arctic Ocean in the 2000s[J]. Journal of Climate, 2012, 25(23): 8362−8370. doi: 10.1175/JCLI-D-12-00266.1
    [24]
    Regan H C, Lique C, Armitage T W K. The Beaufort Gyre extent, shape, and location between 2003 and 2014 from satellite observations[J]. Journal of Geophysical Research: Oceans, 2019, 124(2): 844−862. doi: 10.1029/2018JC014379
    [25]
    Bertosio C, Provost C, Athanase M, et al. Changes in freshwater distribution and pathways in the Arctic Ocean since 2007 in the Mercator Ocean global operational system[J]. Journal of Geophysical Research: Oceans, 2022, 127(6): e2021JC017701. doi: 10.1029/2021JC017701
    [26]
    Schmitt R W. The salt finger experiments of Jevons (1857) and Rayleigh (1880)[J]. Journal of Physical Oceanography, 1995, 25(1): 8−17. doi: 10.1175/1520-0485(1995)025<0008:TSFEOJ>2.0.CO;2
    [27]
    Turner J S, Stommel H. A new case of convection in the presence of combined vertical salinity and temperature gradients[J]. Proceedings of the National Academy of Sciences of the United States of America, 1964, 52(1): 49−53.
    [28]
    赵倩, 赵进平. 加拿大海盆双扩散阶梯结构分布与热通量研究[J]. 地球科学进展, 2011, 26(2): 193−201.

    Zhao Qian, Zhao Jinping. Distribution of double-diffusive staircase structure and heat flux in the Canadian Basin[J]. Advances in Earth Science, 2011, 26(2): 193−201.
    [29]
    McLaughlin F A, Carmack E C, Williams W J, et al. Joint effects of boundary currents and thermohaline intrusions on the warming of Atlantic water in the Canada Basin, 1993–2007[J]. Journal of Geophysical Research: Oceans, 2009, 114(C1): C00A12.
    [30]
    Polyakov I V, Pnyushkov A V, Rember R, et al. Mooring-based observations of double-diffusive staircases over the Laptev Sea slope[J]. Journal of Physical Oceanography, 2012, 42(1): 95−109. doi: 10.1175/2011JPO4606.1
    [31]
    Timmermans M L, Toole J, Proshutinsky A, et al. Eddies in the Canada Basin, Arctic Ocean, observed from ice-tethered profilers[J]. Journal of Physical Oceanography, 2008, 38(1): 133−145. doi: 10.1175/2007JPO3782.1
    [32]
    Lincoln B J, Rippeth T P, Lenn Y D, et al. Wind-driven mixing at intermediate depths in an ice-free Arctic Ocean[J]. Geophysical Research Letters, 2016, 43(18): 9749−9756. doi: 10.1002/2016GL070454
    [33]
    Shibley N C, Timmermans M L, Carpenter J R, et al. Spatial variability of the Arctic Ocean's double-diffusive staircase[J]. Journal of Geophysical Research: Oceans, 2017, 122(2): 980−994. doi: 10.1002/2016JC012419
    [34]
    Steele M, Morison J, Ermold W, et al. Circulation of summer Pacific halocline water in the Arctic Ocean[J]. Journal of Geophysical Research: Oceans, 2004, 109(C2): C02027.
    [35]
    Timmermans M L, Proshutinsky A, Golubeva E, et al. Mechanisms of Pacific summer water variability in the Arctic's Central Canada Basin[J]. Journal of Geophysical Research: Oceans, 2014, 119(11): 7523−7548. doi: 10.1002/2014JC010273
    [36]
    Timmermans M L, Marshall J, Proshutinsky A, et al. Seasonally derived components of the Canada Basin halocline[J]. Geophysical Research Letters, 2017, 44(10): 5008−5015. doi: 10.1002/2017GL073042
    [37]
    Behrendt A, Sumata H, Rabe B, et al. UDASH–unified database for Arctic and Subarctic hydrography[J]. Earth System Science Data, 2018, 10(2): 1119−1138. doi: 10.5194/essd-10-1119-2018
    [38]
    Steele M, Morley R, Ermold W. PHC: a global ocean hydrography with a high-quality Arctic Ocean[J]. Journal of Climate, 2001, 14(9): 2079−2087. doi: 10.1175/1520-0442(2001)014<2079:PAGOHW>2.0.CO;2
    [39]
    Armitage T W K, Bacon S, Ridout A L, et al. Arctic sea surface height variability and change from satellite radar altimetry and GRACE, 2003–2014[J]. Journal of Geophysical Research: Oceans, 2016, 121(6): 4303−4322. doi: 10.1002/2015JC011579
    [40]
    Zhong Wenli, Steele M, Zhang Jinlun, et al. Greater role of geostrophic currents in Ekman dynamics in the western Arctic Ocean as a mechanism for Beaufort Gyre stabilization[J]. Journal of Geophysical Research: Oceans, 2018, 123(1): 149−165. doi: 10.1002/2017JC013282
    [41]
    Polyakov I V, Pnyushkov A V, Carmack E C. Stability of the arctic halocline: a new indicator of arctic climate change[J]. Environmental Research Letters, 2018, 13(12): 125008. doi: 10.1088/1748-9326/aaec1e
    [42]
    Shibley N C, Timmermans M L. The formation of double-diffusive layers in a weakly turbulent environment[J]. Journal of Geophysical Research: Oceans, 2019, 124(3): 1445−1458. doi: 10.1029/2018JC014625
    [43]
    Quadfasel D, SY A, WELLS D, et al. Warming in the Arctic[J]. Nature, 1991, 350(6317): 385.
    [44]
    Quadfasel D, Sy A, Rudels B. A ship of opportunity section to the North Pole: Upper ocean temperature observations[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1993, 40(4): 777−789. doi: 10.1016/0967-0637(93)90071-A
    [45]
    Li Jianqiang, Pickart R S, Lin Peigen, et al. The Atlantic water boundary current in the Chukchi Borderland and southern Canada Basin[J]. Journal of Geophysical Research: Oceans, 2020, 125(8): e2020JC016197. doi: 10.1029/2020JC016197
    [46]
    Dmitrenko I A, Polyakov I V, Kirillov S A, et al. Toward a warmer Arctic Ocean: spreading of the early 21st century Atlantic Water warm anomaly along the Eurasian Basin margins[J]. Journal of Geophysical Research: Oceans, 2008, 113(C5): C05023.
    [47]
    Corlett W B, Pickart R S. The Chukchi slope current[J]. Progress in Oceanography, 2017, 153: 50−65. doi: 10.1016/j.pocean.2017.04.005
    [48]
    Zhong Wenli, Steele M, Zhang Jinlun, et al. Circulation of Pacific winter water in the Western Arctic Ocean[J]. Journal of Geophysical Research: Oceans, 2019, 124(2): 863−881. doi: 10.1029/2018JC014604
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article views (143) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return