Citation: | Wang Yue,Xie Tao,Li Jian, et al. Sea ice concentration retrieval using spaceborne GNSS-R during the melting period[J]. Haiyang Xuebao,2024, 46(5):127–136 doi: 10.12284/hyxb2024026 |
[1] |
Li Xiaoming, Sun Yan, Zhang Qiang. Extraction of sea ice cover by sentinel-1 SAR based on support vector machine with unsupervised generation of training datas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(4): 3040−3053. doi: 10.1109/TGRS.2020.3007789
|
[2] |
Chen Jinlei, Kang Shichang, You Qinglong, et al. Projected changes in sea ice and the navigability of the Arctic Passages under global warming of 2 ℃ and 3 ℃[J]. Anthropocene, 2022, 40: 100349. doi: 10.1016/j.ancene.2022.100349
|
[3] |
谢涛, 赵立. 海冰密集度卫星遥感反演研究进展[J]. 海洋科学进展, 2022, 40(3): 351−366. doi: 10.12362/j.issn.1671-6647.20220209001
Xie Tao, Zhao Li. Advances in sea ice concentration retrieval based on satellite remote sensing[J]. Advances in Marine Science, 2022, 40(3): 351−366. doi: 10.12362/j.issn.1671-6647.20220209001
|
[4] |
Zavorotny V U, Gleason S, Cardellach E, et al. Tutorial on remote sensing using GNSS bistatic radar of opportunity[J]. IEEE Geoscience and Remote Sensing Magazine, 2014, 2(4): 8−45. doi: 10.1109/MGRS.2014.2374220
|
[5] |
Yan Qingyun, Huang Weimin, Moloney C. Neural networks based sea ice detection and concentration retrieval from GNSS-R delay-Doppler maps[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(8): 3789−3798. doi: 10.1109/JSTARS.2017.2689009
|
[6] |
Yan Qingyun, Huang Weimin. Sea ice sensing from GNSS-R data using convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(10): 1510−1514. doi: 10.1109/LGRS.2018.2852143
|
[7] |
Yan Qingyun, Huang Weimin. Sea ice concentration estimation from TechDemoSat-1 data using support vector regression[C]//2019 IEEE Radar Conference (RadarConf). Boston: IEEE, 2019: 1−6.
|
[8] |
Llaveria D, Munoz-Martin J F, Herbert C, et al. Sea ice concentration and sea ice extent mapping with l-band microwave radiometry and GNSS-R data from the FFSCat mission using neural networks[J]. Remote Sensing, 2021, 13(6): 1139. doi: 10.3390/rs13061139
|
[9] |
Zhu Yongchao, Tao T, Zou J, et al. Spaceborne GNSS reflectometry for retrieving sea ice concentration using TDS-1 data[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(4): 612−616. doi: 10.1109/LGRS.2020.2982959
|
[10] |
Guo Wenfei, Du Hao, Guo Chi, et al. Information fusion for GNSS-R wind speed retrieval using statistically modified convolutional neural network[J]. Remote Sensing of Environment, 2022, 272: 112934. doi: 10.1016/j.rse.2022.112934
|
[11] |
Liu Hongsu, Jin Shuanggen, Yan Qingyun. Evaluation of the ocean surface wind speed change following the super typhoon from space-borne GNSS-reflectometry[J]. Remote Sensing, 2020, 12(12): 2034. doi: 10.3390/rs12122034
|
[12] |
Yan Qingyun, Huang Weimin. Spaceborne GNSS-R sea ice detection using delay-Doppler maps: First results from the U. K. TechDemoSat-1 mission[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(10): 4795−4801. doi: 10.1109/JSTARS.2016.2582690
|
[13] |
Cartwright J, Banks C J, Srokosz M. Sea ice detection using GNSS-R data from TechDemoSat-1[J]. Journal of Geophysical Research: Oceans, 2019, 124(8): 5801−5810. doi: 10.1029/2019JC015327
|
[14] |
Rodriguez-Alvarez N, Holt B, Jaruwatanadilok S, et al. An Arctic sea ice multi-step classification based on GNSS-R data from the TDS-1 mission[J]. Remote Sensing of Environment, 2019, 230: 111202. doi: 10.1016/j.rse.2019.05.021
|
[15] |
邵连军, 胡磊, 李冰, 等. 基于CART决策树的星载GNSS-R海冰检测方法[J]. 海洋测绘, 2021, 41(1): 70−74. doi: 10.3969/j.issn.1671-3044.2021.01.015
Shao Lianjun, Hu Lei, Li Bing, et al. Sea ice detection using spaceborne GNSS-R data by CART decision tree[J]. Hydrographic Surveying and Charting, 2021, 41(1): 70−74. doi: 10.3969/j.issn.1671-3044.2021.01.015
|
[16] |
Jales P, Unwin M. MERRByS product manual: GNSS reflectometry on TDS-1 with the SGR-ReSI[R]. Guildford: Surrey Satellite Technol. Ld., 2015.
|
[17] |
Yao Ling, Lu Jiaying, Xia Xiaolin, et al. Evaluation of the ERA5 sea surface temperature around the Pacific and the Atlantic[J]. IEEE Access, 2021, 9: 12067−12073. doi: 10.1109/ACCESS.2021.3051642
|
[18] |
Zhu Yongchao, Yu Kegen, Zou Jingui, et al. Sea ice detection based on differential delay-Doppler maps from UK TechDemoSat-1[J]. Sensors, 2017, 17(7): 1614. doi: 10.3390/s17071614
|
[19] |
Santi E, Clarizia M P, Comite D, et al. Detecting fire disturbances in forests by using GNSS reflectometry and machine learning: a case study in Angola[J]. Remote Sensing of Environment, 2022, 270: 112878. doi: 10.1016/j.rse.2021.112878
|
[20] |
Clarizia M P, Ruf C S, Jales P, et al. Spaceborne GNSS-R minimum variance wind speed estimator[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11): 6829−6843. doi: 10.1109/TGRS.2014.2303831
|
[21] |
Zhu Yongchao, Tao Tingye, Yu Kegen, et al. Sensing sea ice based on Doppler spread analysis of spaceborne GNSS-R data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 217−226. doi: 10.1109/JSTARS.2019.2955175
|
[22] |
Yin Cong, Xia Junming, Huang Feixiong, et al. Sea ice detection with FY3E GNOS II GNSS reflectometry[C]//2021 IEEE Specialist Meeting on Reflectometry using GNSS and other Signals of Opportunity (GNSS+R). Beijing: IEEE, 2021: 36−38.
|
[23] |
Alonso-Arroyo A, Zavorotny V U, Camps A. Sea ice detection using U. K. TDS-1 GNSS-R data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(9): 4989−5001. doi: 10.1109/TGRS.2017.2699122
|
[24] |
Ke Guolin, Meng Qi, Finley T, et al. LightGBM: A highly efficient gradient boosting decision tree[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: Curran Associates Inc., 2017: 3149−3157.
|
[25] |
Chen Jiajia, Shen Huanfeng, Li Xinghua, et al. Ground-level ozone estimation based on geo-intelligent machine learning by fusing in-situ observations, remote sensing data, and model simulation data[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 112: 102955. doi: 10.1016/j.jag.2022.102955
|