Citation: | Lin Yi,Chen Qiang,Zhou Sishun, et al. Effects of CO2-driven seawater acidification on tissue, immune and antioxidant enzyme activity and transcription levels of Ruditapes philippinarum[J]. Haiyang Xuebao,2024, 46(1):88–100 doi: 10.12284/hyxb2024010 |
[1] |
Sabine C L, Feely R A, Gruber N, et al. The oceanic sink for anthropogenic CO2[J]. Science, 2004, 305(5682): 367−371. doi: 10.1126/science.1097403
|
[2] |
石莉, 桂静, 吴克勤. 海洋酸化及国际研究动态[J]. 海洋科学进展, 2011, 29(1): 122−128.
Shi Li, Gui Jing, Wu Keqin. Developments in international studies on ocean acidification[J]. Advances in Marine Science, 2011, 29(1): 122−128.
|
[3] |
Orr J C, Fabry V J, Aumont O, et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms[J]. Nature, 2005, 437(7059): 681−686. doi: 10.1038/nature04095
|
[4] |
Caldeira K, Wickett M E. Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean[J]. Journal of Geophysical Research: Oceans, 2005, 110(C9): C09S04.
|
[5] |
常亚青. 贝类增养殖学[M]. 北京: 中国农业出版社, 2007.
Chang Yaqing. Science of Shellfish Cultivation[M]. Beijing: China Agriculture Press, 2007.
|
[6] |
农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2022中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2022.
Fisheries and Fisheries Administration Bureau of the Ministry of Agriculture and Rural Affairs, National Fisheries Technology Extension Center, China Society of Fisheries. 2022 China Fishery Statistical Yearbook[M]. Beijing: China Agriculture Press, 2022.
|
[7] |
Gazeau F, Quiblier C, Jansen J M, et al. Impact of elevated CO2 on shellfish calcification[J]. Geophysical Research Letters, 2007, 34(7): L07603.
|
[8] |
Talmage S C, Gobler C J. Effects of past, present, and future ocean carbon dioxide concentrations on the growth and survival of larval shellfish[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(40): 17246−17251.
|
[9] |
Bibby R, Widdicombe S, Parry H, et al. Effects of ocean acidification on the immune response of the blue mussel Mytilus edulis[J]. Aquatic Biology, 2008, 2(1): 67−74.
|
[10] |
Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology, 2014, 15(12): 550. doi: 10.1186/s13059-014-0550-8
|
[11] |
Yu Guangchuang, Wang Ligen, Han Yanyan, et al. clusterProfiler: an R package for comparing biological themes among gene clusters[J]. OMICS: A Journal of Integrative Biology, 2012, 16(5): 284−287. doi: 10.1089/omi.2011.0118
|
[12] |
徐宏超, 邢荣莲, 李源美, 等. 氨氮胁迫下菲律宾蛤仔肝胰腺内参基因的筛选[J]. 生态毒理学报, 2021, 16(3): 218−226.
Xu Hongchao, Xing Ronglian, Li Yuanmei, et al. Screening of reference genes in hepatopancreas of clam Ruditapes philippinarum exposed to ammonia nitrogen[J]. Asian Journal of Ecotoxicology, 2021, 16(3): 218−226.
|
[13] |
宋晓楠, 马峻峰, 秦艳杰, 等. 盐度骤降对菲律宾蛤仔抗氧化酶活力及组织结构的影响[J]. 农学学报, 2013, 3(1): 50−56, 70.
Song Xiaonan, Ma Junfeng, Qin Yanjie, et al. Effects of abrupt decline in salinity on the antioxidant enzyme activities and histological structure in Ruditapes philippenarum[J]. Journal of Agriculture, 2013, 3(1): 50−56, 70.
|
[14] |
梁健, 朱飞霞, 刘宇航, 等. 海洋酸化对缢蛏鳃组织结构的影响[J]. 经济动物学报, 2022, 26(4): 299−303.
Liang Jian, Zhu Feixia, Liu Yuhang, et al. Effects of ocean acidification on gill structure of razor clams Sinonovacula constricta[J]. Journal of Economic Animal, 2022, 26(4): 299−303.
|
[15] |
周瑶, 刘丽丹, 孙庆业. 煤矸石对褶纹冠蚌斧足和外套膜重金属含量及组织结构的影响[J]. 西南农业学报, 2022, 35(1): 250−256.
Zhou Yao, Liu Lidan, Sun Qingye. Effects of coal gangue on heavy metal content and tissue structure of foot and mantellum of Cristaria plicata[J]. Southwest China Journal of Agricultural Sciences, 2022, 35(1): 250−256.
|
[16] |
孙虎山, 李光友. 脂多糖对栉孔扇贝血清和血细胞中7种酶活力的影响[J]. 海洋科学, 1999, 23(4): 54−58.
Sun Hushan, Li Guangyou. Effects of lipopolysaccharide on enzymes in serum and haemocytes of Chlamys farreri[J]. Marine Sciences, 1999, 23(4): 54−58.
|
[17] |
郑萍萍, 王春琳, 宋微微, 等. 盐度胁迫对三疣梭子蟹血清非特异性免疫因子的影响[J]. 水产科学, 2010, 29(11): 634−638.
Zheng Pingping, Wang Chunlin, Song Weiwei, et al. Effect of salinity stress on serum non-specific immune factors in swimming crab Portunus trituberculatus[J]. Fisheries Science, 2010, 29(11): 634−638.
|
[18] |
房子恒, 田相利, 董双林, 等. 不同盐度下半滑舌鳎幼鱼非特异性免疫酶活力分析[J]. 中国海洋大学学报(自然科学版), 2014, 44(5): 46−53.
Fang Ziheng, Tian Xiangli, Dong Shuanglin, et al. Analysis of the activity of non-specific immune enzymes of juvenile tongue soles cultured in various salinities[J]. Periodical of Ocean University of China, 2014, 44(5): 46−53.
|
[19] |
谢莉萍, 林静瑜, 肖锐, 等. 合浦珠母贝碱性磷酸酶的分离纯化与性质研究[J]. 海洋科学, 2000, 24(10): 37−40. doi: 10.3969/j.issn.1000-3096.2000.10.014
Xie Liping, Lin Jingyu, Xiao Rui, et al. Purification and characterization of alkaline phosphatase from Pinctada fucata[J]. Marine Sciences, 2000, 24(10): 37−40. doi: 10.3969/j.issn.1000-3096.2000.10.014
|
[20] |
刘璐, 杨玉娇, 王国良. pH突变对拟穴青蟹免疫因子的胁迫影响[J]. 宁波大学学报(理工版), 2009, 22(4): 484−489.
Liu Lu, Yang Yujiao, Wang Guoliang. Effect of sudden changes in pH on the immune factors of Scylla paramamosain[J]. Journal of Ningbo University (Natural Science & Engineering Edition), 2009, 22(4): 484−489.
|
[21] |
刘树青, 江晓路, 牟海津, 等. 免疫多糖对中国对虾血清溶菌酶、磷酸酶和过氧化物酶的作用[J]. 海洋与湖沼, 1999, 30(3): 278−283.
Liu Shuqing, Jiang Xiaolu, Mou Haijin, et al. Effects of immunopoiysaccharide on LSZ, ALP, ACP and POD activities of Penaeus Chinensis serum[J]. Oceanologia et Limnologia Sinica, 1999, 30(3): 278−283.
|
[22] |
赵丹, 周丽青, 吴彪, 等. 魁蚶各组织溶菌酶活性对鳗弧菌侵染的响应[J]. 水产学报, 2020, 44(3): 480−486.
Zhao Dan, Zhou Liqing, Wu Biao, et al. Response of lysozyme activity to Vibrio anguillarum infection in different tissues of Scapharca broughtonii[J]. Journal of Fisheries of China, 2020, 44(3): 480−486.
|
[23] |
姜令绪, 潘鲁青, 肖国强. 氨氮对凡纳对虾免疫指标的影响[J]. 中国水产科学, 2004, 11(6): 537−541. doi: 10.3321/j.issn:1005-8737.2004.06.009
Jiang Lingxu, Pan Luqing, Xiao Guoqiang. Effects of ammonia-N on immune parameters of white shrimp Litopenaeus vannamei[J]. Journal of Fishery Sciences of China, 2004, 11(6): 537−541. doi: 10.3321/j.issn:1005-8737.2004.06.009
|
[24] |
孙敬锋, 吴信忠. 贝类血细胞及其免疫功能研究进展[J]. 水生生物学报, 2006, 30(5): 601−607.
Sun Jingfeng, Wu Xinzhong. The progress of studies on molluscan hemocyte and its immunological function[J]. Acta Hydrobiologica Sinica, 2006, 30(5): 601−607.
|
[25] |
樊甄姣, 杨爱国, 刘志鸿, 等. pH对栉孔扇贝体内几种免疫因子的影响[J]. 中国水产科学, 2006, 13(4): 650−654.
Fan Zhenjiao, Yang Aiguo, Liu Zhihong, et al. Effect of pH on the immune factors of Chlamys farreri[J]. Journal of Fishery Sciences of China, 2006, 13(4): 650−654.
|
[26] |
潘红春, 范杰, 王芳芳, 等. pH值对日本三角涡虫种群增长、无性生殖及6种酶活力的影响[J]. 水生生物学报, 2008, 32(3): 339−344. doi: 10.3724/SP.J.1035.2008.00339
Pan Hongchun, Fan Jie, Wang Fangfang, et al. Effect of medium pH on population growth, asexual reproduction and activity of six enzymes of Dugesia japonica[J]. Acta Hydrobiologica Sinica, 2008, 32(3): 339−344. doi: 10.3724/SP.J.1035.2008.00339
|
[27] |
李晨辉, 王梦杰, 彭艳青, 等. 海洋酸化对脊尾白虾抗氧化酶活性的影响[J]. 淮海工学院学报(自然科学版), 2018, 27(4): 78−83.
Li Chenhui, Wang Mengjie, Peng Yanqing, et al. Effect of ocean acidification on activities of antioxidant enzymein Exopalaemon carinicauda[J]. Journal of Jiangsu Ocean University (Natural Science Edition), 2018, 27(4): 78−83.
|
[28] |
Gaetani G F, Ferraris A M, Rolfo M, et al. Predominant role of catalase in the disposal of hydrogen peroxide within human erythrocytes[J]. Blood, 1996, 87(4): 1595−1599. doi: 10.1182/blood.V87.4.1595.bloodjournal8741595
|
[29] |
Tiedke J, Cubuk C, Burmester T. Environmental acidification triggers oxidative stress and enhances globin expression in zebrafish gills[J]. Biochemical and Biophysical Research Communications, 2013, 441(3): 624−629. doi: 10.1016/j.bbrc.2013.10.104
|
[30] |
Apel K, Hirt H. REACTIVE OXYGEN SPECIES: metabolism, oxidative stress, and signal transduction[J]. Annual Review of Plant Biology, 2004, 55: 373−399. doi: 10.1146/annurev.arplant.55.031903.141701
|
[31] |
Warner H R. Superoxide dismutase, aging, and degenerative disease[J]. Free Radical Biology and Medicine, 1994, 17(3): 249−258. doi: 10.1016/0891-5849(94)90080-9
|
[32] |
Villar-Piqué A, Ventura S. Protein aggregation propensity is a crucial determinant of intracellular inclusion formation and quality control degradation[J]. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2013, 1833(12): 2714−2724. doi: 10.1016/j.bbamcr.2013.06.023
|
[33] |
Theocharis A D, Skandalis S S, Gialeli C, et al. Extracellular matrix structure[J]. Advanced Drug Delivery Reviews, 2016, 97: 4−27. doi: 10.1016/j.addr.2015.11.001
|
[34] |
Wang Le, Sun Fei, Wen Yanfei, et al. Effects of ocean acidification on transcriptomes in Asian seabass juveniles[J]. Marine Biotechnology, 2021, 23(3): 445−455. doi: 10.1007/s10126-021-10036-5
|
[35] |
周岳华, 黄勇, 翟玲, 等. 真核生物核糖体和mRNA翻译的研究进展[J]. 安徽农业科学, 2012, 40(24): 11946−11948. doi: 10.3969/j.issn.0517-6611.2012.24.007
Zhou Yuehua, Huang Yong, Zhai Ling, et al. Research progress in eukaryotic ribosome and mRNA translation[J]. Journal of Anhui Agricultural Sciences, 2012, 40(24): 11946−11948. doi: 10.3969/j.issn.0517-6611.2012.24.007
|
[36] |
贾若南, 林枫, 许强华. 低氧胁迫下斑马鱼鳃中核糖体蛋白基因家族的表达分析[J]. 上海海洋大学学报, 2022, 31(2): 318−327.
Jia Ruonan, Lin Feng, Xu Qianghua. Differential expression analysis of the ribosomal protein gene family in zebrafish gills under hypoxia stress[J]. Journal of Shanghai Ocean University, 2022, 31(2): 318−327.
|
[37] |
Henrique D, Schweisguth F. Mechanisms of Notch signaling: a simple logic deployed in time and space[J]. Development, 2019, 146(3): dev172148. doi: 10.1242/dev.172148
|
[38] |
Zheng Chunfu. The emerging roles of NOD-like receptors in antiviral innate immune signaling pathways[J]. International Journal of Biological Macromolecules, 2021, 169: 407−413. doi: 10.1016/j.ijbiomac.2020.12.127
|
[39] |
Johnson K M, Hofmann G E. A transcriptome resource for the Antarctic pteropod Limacina helicina antarctica[J]. Marine Genomics, 2016, 28: 25−28. doi: 10.1016/j.margen.2016.04.002
|
[40] |
刘俊文, 杨向东. 泛素−蛋白酶体途径介导的细胞周期调节蛋白的水解[J]. 国外医学·老年医学分册, 2005, 26(1): 30−34.
Liu Junwen, Yang Xiangdong. Ubiquitin-proteasome pathway mediated hydrolysis of cell cycle regulatory proteins[J]. International Journal of Geriatrics, 2005, 26(1): 30−34.
|
[41] |
Zhang Dongsheng, Yu Mengchao, Hu Peng, et al. Genetic adaptation of Schizothoracine fish to the phased uplifting of the Qinghai-Tibetan Plateau[J]. G3-Genes Genomes Genetics, 2017, 7(4): 1267−1276.
|
[42] |
Todgham A E, Crombie T A, Hofmann G E. The effect of temperature adaptation on the ubiquitin-proteasome pathway in notothenioid fishes[J]. Journal of Experimental Biology, 2017, 220(3): 369−378.
|
[43] |
Sutherland T E, Dyer D P, Allen J E. The extracellular matrix and the immune system: a mutually dependent relationship[J]. Science, 2023, 379(6633): eabp8964. doi: 10.1126/science.abp8964
|
[44] |
Hatinguais R, Willment J A, Brown G D. C-type lectin receptors in antifungal immunity: current knowledge and future developments[J]. Parasite Immunology, 2023, 45(2): e12951. doi: 10.1111/pim.12951
|