Citation: | Yao Yu,Zhou Baobao. A review of coral reef canopy hydrodynamics[J]. Haiyang Xuebao,2024, 46(1):1–11 doi: 10.12284/hyxb2024002 |
[1] |
Lowe R J, Shavit U, Falter J L, et al. Modeling flow in coral communities with and without waves: A synthesis of porous media and canopy flow approaches[J]. Limnology and Oceanography, 2008, 53(6): 2668−2680. doi: 10.4319/lo.2008.53.6.2668
|
[2] |
Lowe R J, Falter J L. Oceanic forcing of coral reefs[J]. Annual Review of Marine Science, 2015, 7: 43−66. doi: 10.1146/annurev-marine-010814-015834
|
[3] |
Finnigan J. Turbulence in plant canopies[J]. Annual Review of Fluid Mechanics, 2000, 32: 519−571. doi: 10.1146/annurev.fluid.32.1.519
|
[4] |
Asher S, Shavit U. The effect of water depth and internal geometry on the turbulent flow inside a coral reef[J]. Journal of Geophysical Research: Oceans, 2019, 124(6): 3508−3522. doi: 10.1029/2018JC014331
|
[5] |
Falter J L, Atkinson M J, Lowe R J, et al. Effects of nonlocal turbulence on the mass transfer of dissolved species to reef corals[J]. Limnology and Oceanography, 2007, 52(1): 274−285. doi: 10.4319/lo.2007.52.1.0274
|
[6] |
Lesser M P, Weis V M, Patterson M R, et al. Effects of morphology and water motion on carbon delivery and productivity in the reef coral, Pocillopora damicornis (Linnaeus)—Diffusion barriers, inorganic carbon limitation, and biochemical plasticity[J]. Journal of Experimental Marine Biology and Ecology, 1994, 178(2): 153−179. doi: 10.1016/0022-0981(94)90034-5
|
[7] |
Sebens K P, Helmuth B, Carrington E, et al. Effects of water flow on growth and energetics of the scleractinian coral Agaricia tenuifolia in Belize[J]. Coral Reefs, 2003, 22(1): 35−47. doi: 10.1007/s00338-003-0277-6
|
[8] |
Williams S L, Carpenter R C. Effects of unidirectional and oscillatory water flow on nitrogen fixation (acetylene reduction) in coral reef algal turfs, Kaneohe Bay, Hawaii[J]. Journal of Experimental Marine Biology and Ecology, 1998, 226(2): 293−316. doi: 10.1016/S0022-0981(97)00252-9
|
[9] |
Lowe R J, Koseff J R, Monismith S G. Oscillatory flow through submerged canopies: 1. Velocity structure[J]. Journal of Geophysical Research: Oceans, 2005, 110(C10): C10016.
|
[10] |
Rosman J H, Hench J L. A framework for understanding drag parameterizations for coral reefs[J]. Journal of Geophysical Research: Oceans, 2011, 116(C8): C08025.
|
[11] |
Monismith S G, Rogers J S, Koweek D, et al. Frictional wave dissipation on a remarkably rough reef[J]. Geophysical Research Letters, 2015, 42(10): 4063−4071. doi: 10.1002/2015GL063804
|
[12] |
Pomeroy A, Lowe R J, Ghisalberti M, et al. Mechanics of sediment suspension and transport within a fringing reef[C]//Proceedings of Coastal Sediments 215. San Diego: World Scientific Publishing, 2015.
|
[13] |
Monismith S G. Hydrodynamics of coral reefs[J]. Annual Review of Fluid Mechanics, 2007, 39: 37−55. doi: 10.1146/annurev.fluid.38.050304.092125
|
[14] |
Raupach M R, Antonia R A, Rajagopalan S. Rough-wall turbulent boundary layers[J]. Applied Mechanics Reviews, 1991, 44(1): 1−25. doi: 10.1115/1.3119492
|
[15] |
Nepf H M, Ghisalberti M, White B, et al. Retention time and dispersion associated with submerged aquatic canopies[J]. Water Resources Research, 2007, 43(2): W04422.
|
[16] |
Nepf H M. Flow and transport in regions with aquatic vegetation[J]. Annual Review of Fluid Mechanics, 2012, 44: 123−142. doi: 10.1146/annurev-fluid-120710-101048
|
[17] |
Nepf H M, Vivoni E R. Flow structure in depth-limited, vegetated flow[J]. Journal of Geophysical Research: Oceans, 2000, 105(C12): 28547−28557. doi: 10.1029/2000JC900145
|
[18] |
Grant W D, Madsen O S. Combined wave and current interaction with a rough bottom[J]. Journal of Geophysical Research: Oceans, 1979, 84(C4): 1797−1808. doi: 10.1029/JC084iC04p01797
|
[19] |
Lowe R J, Koseff J R, Monismith S G, et al. Oscillatory flow through submerged canopies: 2. Canopy mass transfer[J]. Journal of Geophysical Research: Oceans, 2005, 110(C10): C10017.
|
[20] |
Luhar M, Coutu S, Infantes E, et al. Wave-induced velocities inside a model seagrass bed[J]. Journal of Geophysical Research: Oceans, 2010, 115(C12): C12005.
|
[21] |
Infantes E, Orfila A, Simarro G, et al. Effect of a seagrass ( Posidonia oceanica) meadow on wave propagation[J]. Marine Ecology Progress Series, 2012, 456: 63−72. doi: 10.3354/meps09754
|
[22] |
Pomeroy A W M, Lowe R J, Ghisalberti M, et al. Sediment transport in the presence of large reef bottom roughness[J]. Journal of Geophysical Research: Oceans, 2017, 122(2): 1347−1368. doi: 10.1002/2016JC011755
|
[23] |
Reidenbach M A, Koseff J R, Monismith S G. Laboratory experiments of fine-scale mixing and mass transport within a coral canopy[J]. Physics of Fluids, 2007, 19(7): 075107. doi: 10.1063/1.2752189
|
[24] |
Van Rooijen A, Lowe R, Rijnsdorp D P, et al. Wave-driven mean flow dynamics in submerged canopies[J]. Journal of Geophysical Research: Oceans, 2020, 125(3): e2019JC015935. doi: 10.1029/2019JC015935
|
[25] |
Wiberg P L. A theoretical investigation of boundary layer flow and bottom shear stress for smooth, transitional, and rough flow under waves[J]. Journal of Geophysical Research: Oceans, 1995, 100(C11): 22667−22679. doi: 10.1029/95JC02377
|
[26] |
Yao Yu, Liu Yicheng, Chen Long, et al. Study on the wave-driven current around the surf zone over fringing reefs[J]. Ocean Engineering, 2020, 198: 106968. doi: 10.1016/j.oceaneng.2020.106968
|
[27] |
Zheng Jinhai, Yao Yu, Chen Songgui, et al. Laboratory study on wave-induced setup and wave-driven current in a 2DH reef-lagoon-channel system[J]. Coastal Engineering, 2020, 162: 103772. doi: 10.1016/j.coastaleng.2020.103772
|
[28] |
Davis K A, Pawlak G, Monismith S G. Turbulence and coral reefs[J]. Annual Review of Marine Science, 2020, 13: 343−373.
|
[29] |
Reidenbach M A, Monismith S G, Koseff J R, et al. Boundary layer turbulence and flow structure over a fringing coral reef[J]. Limnology and Oceanography, 2006, 51(5): 1956−1968. doi: 10.4319/lo.2006.51.5.1956
|
[30] |
Huang Zhicheng, Lenain L, Melville W K, et al. Dissipation of wave energy and turbulence in a shallow coral reef lagoon[J]. Journal of Geophysical Research: Oceans, 2012, 117(C3): C03015.
|
[31] |
Hench J L, Rosman J H. Observations of spatial flow patterns at the coral colony scale on a shallow reef flat[J]. Journal of Geophysical Research: Oceans, 2013, 118(3): 1142−1156. doi: 10.1002/jgrc.20105
|
[32] |
Mei C C. The Applied Dynamics of Ocean Surface Waves[M]. New York: Wiley, 1983.
|
[33] |
Lentz S J, Churchill J H, Davis K A. Coral reef drag coefficients—surface gravity wave enhancement[J]. Journal of Physical Oceanography, 2018, 48(7): 1555−1566. doi: 10.1175/JPO-D-17-0231.1
|
[34] |
Feddersen F, Guza R T, Elgar S, et al. Velocity moments in alongshore bottom stress parameterizations[J]. Journal of Geophysical Research: Oceans, 2000, 105(C4): 8673−8686. doi: 10.1029/2000JC900022
|
[35] |
Soulsby R, Vlarke S. Bed shear-stresses under combined waves and currents on smooth and rough beds[R]. Wallingford, U. K. : HR Wallingford Ltd. , 2005.
|
[36] |
Jonsson I G. Wave boundary layers and friction factors[C]. Proc. 10th International Conference Coastal Engineering. Tokyo: [s.n.], 1966: 127−148.
|
[37] |
Yao Yu, He Wenrun, Jiang Changbo, et al. Wave-induced set-up over barrier reefs under the effect of tidal current[J]. Journal of Hydraulic Research, 2020, 58(3): 447−459. doi: 10.1080/00221686.2019.1623928
|
[38] |
Buckley M L, Lowe R J, Hansen J E, et al. Wave setup over a fringing reef with large bottom roughness[J]. Journal of Physical Oceanography, 2016, 46(8): 2317−2333. doi: 10.1175/JPO-D-15-0148.1
|
[39] |
Thomas F I M, Atkinson M J. Ammonium uptake by coral reefs: effects of water velocity and surface roughness on mass transfer[J]. Limnology and Oceanography, 1997, 42(1): 81−88. doi: 10.4319/lo.1997.42.1.0081
|
[40] |
Mcdonald C B, Koseff J R, Monismith S G. Effects of the depth to coral height ratio on drag coefficients for unidirectional flow over coral[J]. Limnology and Oceanography, 2006, 51(3): 1294−1301. doi: 10.4319/lo.2006.51.3.1294
|
[41] |
Lentz S J, Davis K A, Chuechill J H, et al. Coral reef drag coefficients–water depth dependence[J]. Journal of Physical Oceanography, 2017, 47(5): 1061−1075. doi: 10.1175/JPO-D-16-0248.1
|
[42] |
Asher S, Niewerth S, Koll K, et al. Vertical variations of coral reef drag forces[J]. Journal of Geophysical Research: Oceans, 2016, 121(5): 3549−3563. doi: 10.1002/2015JC011428
|
[43] |
Lowe R J, Falter J L, Bandet M D, et al. Spectral wave dissipation over a barrier reef[J]. Journal of Geophysical Research: Oceans, 2005, 110(C4): C04001.
|
[44] |
Nelson R C. Hydraulic roughness of coral reef platforms[J]. Applied Ocean Research, 1996, 18(5): 265−274. doi: 10.1016/S0141-1187(97)00006-0
|
[45] |
Rogers J S, Monismith S G, Koweek D A, et al. Wave dynamics of a Pacific Atoll with high frictional effects[J]. Journal of Geophysical Research: Oceans, 2016, 121(1): 350−367. doi: 10.1002/2015JC011170
|
[46] |
Swart D H. Offshore sediment transport and equilibrium beach profiles[D]. Delft, Netherlands: Delft University of Technology, 1974.
|
[47] |
Lentz S J, Churchill J H, Davis K A, et al. Surface gravity wave transformation across a platform coral reef in the Red Sea[J]. Journal of Geophysical Research: Oceans, 2016, 121(1): 693−705. doi: 10.1002/2015JC011142
|
[48] |
Akan A O. Open Channel Hydraulics[M]. UK: Butterworth-Heinemann, 2006.
|
[49] |
Yao Yu, Huang Zhenhua, Monismith S G, et al. 1DH Boussinesq modeling of wave transformation over fringing reefs[J]. Ocean Engineering, 2012, 47: 30−42. doi: 10.1016/j.oceaneng.2012.03.010
|
[50] |
Yao Yu, Zhang Qiming, Chen Songgui, et al. Effects of reef morphology variations on wave processes over fringing reefs[J]. Applied Ocean Research, 2019, 82: 52−62. doi: 10.1016/j.apor.2018.10.021
|
[51] |
Yao Yu, Zhang Qiming, Becker J M, et al. Boussinesq modeling of wave processes in field fringing reef environments[J]. Applied Ocean Research, 2020, 95: 102025. doi: 10.1016/j.apor.2019.102025
|
[52] |
Roeber V, Cheung K F. Boussinesq-type model for energetic breaking waves in fringing reef environments[J]. Coastal Engineering, 2012, 70: 1−20. doi: 10.1016/j.coastaleng.2012.06.001
|
[53] |
Roeber V. Boussinesq-type model for nearshore wave processes in fringing reef environment[D]. Honolulu: University of Hawaii at Manoa, 2010.
|
[54] |
Lashley G H, Roelvink D, Van Dongeren A, et al. Nonhydrostatic and surfbeat model predictions of extreme wave run-up in fringing reef environments[J]. Coastal Engineering, 2018, 137: 11−27. doi: 10.1016/j.coastaleng.2018.03.007
|
[55] |
Demirbilek Z, Nwogu O G, Ward D L. Laboratory study of wind effect on runup over fringing reefs report: 1: data report[R]. Washington: Army Engineer Research and Development Center, 2007.
|
[56] |
Buckley M L, Lowe R J, Hansen J E, et al. Dynamics of wave setup over a steeply sloping fringing reef[J]. Journal of Physical Oceanography, 2015, 45(12): 3005−3023. doi: 10.1175/JPO-D-15-0067.1
|
[57] |
Drost E J F, Cuttler M V W, Lowe R J, et al. Predicting the hydrodynamic response of a coastal reef-lagoon system to a tropical cyclone using phase-averaged and surfbeat-resolving wave models[J]. Coastal Engineering, 2019, 152: 103525. doi: 10.1016/j.coastaleng.2019.103525
|
[58] |
Quataert E, Storlazzi C, Van Dongeren V, et al. The importance of explicitly modelling sea-swell waves for runup on reef-lined coasts[J]. Coastal Engineering, 2020, 160: 103704. doi: 10.1016/j.coastaleng.2020.103704
|
[59] |
Franklin G, Mariño-Tapia I, Torres-Freyermuth A. Effects of reef roughness on wave setup and surf zone currents[J]. Journal of Coastal Research, 2013, 118(sp2): 2005−2010.
|
[60] |
Baldock T E, Shabani B, Callaghan D P, et al. Two-dimensional modelling of wave dynamics and wave forces on fringing coral reefs[J]. Coastal Engineering, 2020, 155: 103594. doi: 10.1016/j.coastaleng.2019.103594
|
[61] |
Morison J R, Johnson J W, Schaaf S A. The force exerted by surface waves on piles[J]. Journal of Petroleum Technology, 1950, 2(5): 149−154. doi: 10.2118/950149-G
|
[62] |
Huang Zhenhua, Yao Yu, Sim S Y, et al. Interaction of solitary waves with emergent, rigid vegetation[J]. Ocean Engineering, 2011, 38(10): 1080−1088. doi: 10.1016/j.oceaneng.2011.03.003
|
[63] |
Suzuki T, Hu Zhan, Kumada K, et al. Non-hydrostatic modeling of drag, inertia and porous effects in wave propagation over dense vegetation fields[J]. Coastal Engineering, 2019, 149: 49−64. doi: 10.1016/j.coastaleng.2019.03.011
|
[64] |
Yao Yu, He Fang, Tang Zhengjiang, et al. A study of tsunami-like solitary wave transformation and run-up over fringing reefs[J]. Ocean Engineering, 2018, 149: 142−155. doi: 10.1016/j.oceaneng.2017.12.020
|
[65] |
Rijnsdorp D P, Buckley M I, Da Silva R F, et al. A numerical study of wave-driven mean flows and setup dynamics at a coral reef-lagoon system[J]. Journal of Geophysical Research: Oceans, 2021, 126(4): e2020JC016811. doi: 10.1029/2020JC016811
|
[66] |
Higuera P, Lara J, Losada I J. Three-dimensional interaction of waves and porous coastal structures using OpenFOAM®. Part I: Formulation and validation[J]. Coastal Engineering, 2014, 81: 243−258.
|
[67] |
Del Jesus M. Three-dimensional interaction of water waves with coastal structures[D]. Santander: Universidad de Cantabria, 2011.
|
[68] |
De Ridder M. Non-hydrostatic wave modelling of coral reefs with the addition of a porous in-canopy model[D]. Delft, Netherlands: Delft University of Technology, 2018.
|
[69] |
Yao Yu, Chen Xiaojin, Xu Conghao, et al. Modeling solitary wave transformation and run-up over fringing reefs with large bottom roughness[J]. Ocean Engineering, 2020, 218: 108208. doi: 10.1016/j.oceaneng.2020.108208
|
[70] |
Yao Yu, Chen Xianjin, Xu Conghao, et al. Numerical modelling of wave transformation and runup over rough fringing reefs using VARANS equations[J]. Applied Ocean Research, 2022, 118: 102952. doi: 10.1016/j.apor.2021.102952
|
[71] |
He Dongbin, Ma Yuxiang, Dong Guohai, et al. A numerical investigation of wave and current fields along bathymetry with porous media[J]. Ocean Engineering, 2022, 244: 110333. doi: 10.1016/j.oceaneng.2021.110333
|
[72] |
Wang Yanxu, Yin Zegao, Liu Yong. Numerical investigation of solitary wave attenuation and resistance induced by rigid vegetation based on a 3-D RANS model[J]. Advances in Water Resources, 2020, 146: 103755. doi: 10.1016/j.advwatres.2020.103755
|
[73] |
Osorio-Cano J D, Alcérreca-Huerta J C, Osprio A F, et al. CFD modelling of wave damping over a fringing reef in the Colombian Caribbean[J]. Coral Reefs, 2018, 37(4): 1093−1108. doi: 10.1007/s00338-018-1736-4
|
[74] |
Yu Xiao, Rosman J H, Hench J L. Interaction of waves with idealized high-relief bottom roughness[J]. Journal of Geophysical Research: Oceans, 2018, 123(4): 3038−3059. doi: 10.1029/2017JC013515
|