Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 45 Issue 12
Dec.  2023
Turn off MathJax
Article Contents
Wang Yikan,Liu Rongjie,Liu Jianqiang, et al. Detection method of red tide based on the spectral features from HY-1C/D satellite: Take red Noctiluca scintillans blooms as an example[J]. Haiyang Xuebao,2023, 45(12):166–178 doi: 10.12284/hyxb2023179
Citation: Wang Yikan,Liu Rongjie,Liu Jianqiang, et al. Detection method of red tide based on the spectral features from HY-1C/D satellite: Take red Noctiluca scintillans blooms as an example[J]. Haiyang Xuebao,2023, 45(12):166–178 doi: 10.12284/hyxb2023179

Detection method of red tide based on the spectral features from HY-1C/D satellite: Take red Noctiluca scintillans blooms as an example

doi: 10.12284/hyxb2023179
  • Received Date: 2023-05-12
  • Rev Recd Date: 2023-11-25
  • Available Online: 2024-01-12
  • Publish Date: 2023-12-01
  • Red Noctiluca scintillans is the main red tide species in China, which often occurs in the Bohai Sea, Yellow Sea, East China Sea and South China Sea. Recently, the red N. scintillans blooms occurred frequently, leading to an urgent need for their monitoring. However, the occurrence of red N. scintillans blooms is characterized by wide distribution range, rapid change and strip distribution. Therefore, the high spatial resolution, large coverage and short revisit period satellites are needed for red N. scintillans blooms monitoring. Although, ocean color satellites have played an important role in red tide detection, they cannot detect the strip distributed red N. scintillans blooms for their low spatial resolution. The Coastal Zone Imager (CZI) onboard HY-1C/D satellite, with high spatial resolution, wide swath and short revisit cycle, has been increasingly used for red tide monitoring. Most existing red N. scintillans blooms detection methods for HY-1C/D CZI are based on deep learning methods, which need a large number of training samples. However, the training samples are difficult to obtain, which affects the accuracy of the models. Therefore, taking red N. scintillans bloom occurred in the Honghai Bay, Guangdong Province in March 2022 as an example, the spectral features of red N. scintillans blooms were analyzed in this paper, the red tide detection method based on the high reflectance features of red N. scintillans blooms in the red and near infrared bands and turbid water in the green band was constructed for HY-1C/D CZI. The experimental results show that based on the method, red N. scintillans blooms can be detected effectively in the turbid water, with precision and F1-Score of 89.72% and 0.90 respectively. Moreover, the method has good applicability, and it is proved to be suitable for the detection of red N. scintillans blooms in different marine environments. Also, it is applicable to different broad band sensors.
  • loading
  • [1]
    崔廷伟, 张杰, 马毅, 等. 赤潮光谱特征及其形成机制[J]. 光谱学与光谱分析, 2006, 26(5): 884−886. doi: 10.3321/j.issn:1000-0593.2006.05.025

    Cui Tingwei, Zhang Jie, Ma Yi, et al. Study of red tide spectral characteristics and its mechanism[J]. Spectroscopy and Spectral Analysis, 2006, 26(5): 884−886. doi: 10.3321/j.issn:1000-0593.2006.05.025
    [2]
    谢宏英, 王金辉, 马祖友, 等. 赤潮灾害的研究进展[J]. 海洋环境科学, 2019, 38(3): 482−488. doi: 10.12111/j.mes20190323

    Xie Hongying, Wang Jinhui, Ma Zuyou, et al. Review of harmful algal blooms hazard[J]. Marine Environmental Science, 2019, 38(3): 482−488. doi: 10.12111/j.mes20190323
    [3]
    do Rosário Gomes H, Goes J I, Matondkar S G P, et al. Massive outbreaks of Noctiluca scintillans blooms in the Arabian Sea due to spread of hypoxia[J]. Nature Communications, 2014, 5(1): 4862. doi: 10.1038/ncomms5862
    [4]
    齐琳, 胡传民, 陆应诚, 等. 基于HY-1C/D卫星CZI的海洋、湖泊中漂浮藻藻华的光谱分析与识别[J]. 遥感学报, 2023, 27(1): 157−170. doi: 10.11834/jrs.20235009

    Qi Lin, Hu Chuanmin, Lu Yingcheng, et al. Spectral analysis and identification of floating algal blooms in oceans and lakes based on HY-1C/D CZI observations[J]. National Remote Sensing Bulletin, 2023, 27(1): 157−170. doi: 10.11834/jrs.20235009
    [5]
    杨幸幸, 杨颖, 许彩燕, 等. 福建和浙江海域夜光藻赤潮2009−2019年的变化及主要环境因子分析[C]//第三届海洋开发与管理学术年会论文集. 北京: 海洋出版社, 2019: 76−83.

    Yang Xingxing, Yang Ying, Xu Caiyan, et al. Changes of red tide of nocturnal algae in Fujian and Zhejiang warers from 2009 to 2019 and analysis of main environment factors[C]//Proceedings of the Third Annual Conference on Ocean Development and Management. Beijing: China Ocean Press, 2019: 76−83.
    [6]
    Gower J, King S. Validation of chlorophyll fluorescence derived from MERIS on the west coast of Canada[J]. International Journal of Remote Sensing, 2007, 28(3/4): 625−635.
    [7]
    Gower J, King S, Goncalves P. Global monitoring of plankton blooms using MERIS MCI[J]. International Journal of Remote Sensing, 2008, 29(21): 6209−6216. doi: 10.1080/01431160802178110
    [8]
    Lee M S, Park K A, Micheli F. Derivation of red tide index and density using geostationary ocean color imager (GOCI) data[J]. Remote Sensing, 2021, 13(2): 298. doi: 10.3390/rs13020298
    [9]
    Shen Fang, Tang Rugang, Sun Xuerong, et al. Simple methods for satellite identification of algal blooms and species using 10-year time series data from the East China Sea[J]. Remote Sensing of Environment, 2019, 235: 111484. doi: 10.1016/j.rse.2019.111484
    [10]
    Tao Bangyi, Mao Zhihua, Lei Hui, et al. A novel method for discriminating Prorocentrum donghaiense from diatom blooms in the East China Sea using MODIS measurements[J]. Remote Sensing of Environment, 2015, 158: 267−280. doi: 10.1016/j.rse.2014.11.004
    [11]
    Tao Bangyi, Mao Zhihua, Wang Difeng, et al. The use of MERIS fluorescence bands for red tides monitoring in the East China Sea[C]//Proceedings of SPIE 8175, Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2011. Prague: SPIE, 2011: 439−446.
    [12]
    Liu Rongjie, Xiao Yanfang, Ma Yi, et al. Red tide detection based on high spatial resolution broad band optical satellite data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 184: 131−147. doi: 10.1016/j.isprsjprs.2021.12.009
    [13]
    Liu Rongjie, Zhang Jie, Cui Binge, et al. Red tide detection based on high spatial resolution broad band satellite data: a case study of GF-1[J]. Journal of Coastal Research, 2019, 90(SI): 120−128.
    [14]
    刘建强, 叶小敏, 宋庆君, 等. HY-1C/D海洋水色卫星产品体系及其典型应用[J]. 遥感学报, 2023, 27(1): 1−13. doi: 10.11834/jrs.20235002

    Liu Jianqiang, Ye Xiaomin, Song Qingjun, et al. Products of HY-1C/D ocean color satellites and their typical applications[J]. National Remote Sensing Bulletin, 2023, 27(1): 1−13. doi: 10.11834/jrs.20235002
    [15]
    Cao Mengmeng, Qing Song, Jin E, et al. A spectral index for the detection of algal blooms using Sentinel-2 Multispectral Instrument (MSI) imagery: a case study of Hulun Lake, China[J]. International Journal of Remote Sensing, 2021, 42(12): 4514−4535. doi: 10.1080/01431161.2021.1897186
    [16]
    Yunus A P, Dou Jie, Sravanthi N. Remote sensing of chlorophyll- a as a measure of red tide in Tokyo Bay using hotspot analysis[J]. Remote Sensing Applications: Society and Environment, 2015, 2: 11−25. doi: 10.1016/j.rsase.2015.09.002
    [17]
    陈曦. 基于MODIS和HJ-1数据的赤潮遥感监测[D]. 福州: 福州大学, 2014.

    Chen Xi. Red tide remote sensing monitoring based on MODIS and HJ-1 data[D]. Fuzhou: Fuzhou University, 2014.
    [18]
    Lee M S, Park K A, Chae J, et al. Red tide detection using deep learning and high-spatial resolution optical satellite imagery[J]. International Journal of Remote Sensing, 2020, 41(15): 5838−5860. doi: 10.1080/01431161.2019.1706011
    [19]
    Zhao Xin, Liu Rongjie, Ma Yi, et al. Red tide detection method for HY-1D coastal zone imager based on U-net convolutional neural network[J]. Remote Sensing, 2022, 14(1): 88.
    [20]
    Cui Hanlin, Chen Shuguo, Hu Lianbo, et al. HY1C/D-CZI Noctiluca scintillans bloom recognition network based on hybrid convolution and self-attention[J]. Remote Sensing, 2023, 15(7): 1757. doi: 10.3390/rs15071757
    [21]
    Lin Mingsen, Zou Bin, Zeng Tao, et al. Marine environmental monitoring with GF-1 data[C]//Proceedings of 2016 IEEE International Geoscience and Remote Sensing Symposium. Beijing: IEEE, 2016: 3750−3753.
    [22]
    葛化鑫, 刘荣杰, 赵鑫, 等. 中高空间分辨率宽波段光学卫星传感器参数赤潮探测影响研究[J]. 海洋学报, 2022, 44(12): 136−147.

    Ge Huaxin, Liu Rongjie, Zhao Xin, et al. Impact of medium and high spatial resolution wide band optical satellite sensor parameters on red tide detection[J]. Haiyang Xuebao, 2022, 44(12): 136−147.
    [23]
    Kreyszig E. Advanced Engineering Mathematics[M]. 10th ed. New Delhi: Wiley, 2011: 154−196.
    [24]
    Congalton R G. A review of assessing the accuracy of classifications of remotely sensed data[J]. Remote Sensing of Environment, 1991, 37(1): 35−46. doi: 10.1016/0034-4257(91)90048-B
    [25]
    Powers D M W. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness & correlation[J]. Journal of Machine Learning Technologies, 2011, 2(1): 37−63.
    [26]
    蔡丽娜. 舟山近岸海域水体光谱特性分析[J]. 安徽农业科学, 2012, 40(16): 9070−9071, 9090 doi: 10.3969/j.issn.0517-6611.2012.16.104

    Cai Lina. Analysis of nearshore water spectral character in Zhoushan[J]. Journal of Anhui Agricultural Sciences, 2012, 40(16): 9070−9071,9090. doi: 10.3969/j.issn.0517-6611.2012.16.104
    [27]
    方圣辉, 张加晋. 不同泥沙含量水体光谱特性分析[J]. 测绘信息与工程, 2007, 32(6): 47−49. doi: 10.3969/j.issn.1007-3817.2007.06.020

    Fang Shenghui, Zhang Jiajin. Spectral property analysis of water suspended sediment concentrations[J]. Journal of Geomatics, 2007, 32(6): 47−49. doi: 10.3969/j.issn.1007-3817.2007.06.020
    [28]
    雷惠, 潘德炉, 陶邦一, 等. 东海典型水体的黄色物质光谱吸收及分布特征[J]. 海洋学报, 2009, 31(2): 57−62.

    Lei Hui, Pan Delu, Tao Bangyi, et al. The spectral absorption and distribution characteristics of CDOM in the typical waters of the East China Sea[J]. Haiyang Xuebao, 2009, 31(2): 57−62.
    [29]
    Xie Qiling, Yan Nanyang, Yang Xue, et al. Synoptic view of an unprecedented red Noctiluca scintillans bloom in the Beibu Gulf, China[J]. Science of the Total Environment, 2023, 863: 160980. doi: 10.1016/j.scitotenv.2022.160980
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(3)

    Article views (231) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return