Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 45 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
Zhou Jing,Si Yulin,Lin Yuan, et al. A review of subsea AUV technology[J]. Haiyang Xuebao,2023, 45(10):1–12 doi: 10.12284/hyxb2023153
Citation: Zhou Jing,Si Yulin,Lin Yuan, et al. A review of subsea AUV technology[J]. Haiyang Xuebao,2023, 45(10):1–12 doi: 10.12284/hyxb2023153

A review of subsea AUV technology

doi: 10.12284/hyxb2023153
  • Received Date: 2023-03-27
  • Rev Recd Date: 2023-05-23
  • Available Online: 2023-11-14
  • Publish Date: 2023-10-30
  • The observation and exploration of the seabed urgently requires the appearance of large-scale and long-term observation platforms. The subsea AUV has three main points: a structure that suitable for the mobility in the seabed, an intelligent motion performance that adapts to the complex environment of the seabed, and the underwater acoustic communication and positioning technology that adapts to the seabed. In this paper, the development and evolution of subsea AUV is analyzed, the key technical challenges of underwater AUVs are summarized, and corresponding solutions for underwater AUV hydrodynamic shape optimization technology, intelligent motion control technology, underwater acoustic communication and positioning navigation technology, and underwater connection and charging technology are provided. Finally, a study case of Autonomous Underwater Helicopter is given, to provide a solution for subsea AUV. This paper provides guidance for the development of subsea AUV, as well as ocean observation and exploration technology.
  • loading
  • [1]
    陈鹰, 杨灿军, 陶春辉, 等. 海底观测系统[M]. 北京: 海洋出版社, 2006.

    Chen Ying, Yang Canjun, Tao Chunhui, et al. Deep Sea Observatory System[M]. Beijing: China Ocean Press, 2006.
    [2]
    Doya C, Chatzievangelou D, Bahamon N, et al. Seasonal monitoring of deep-sea megabenthos in Barkley Canyon cold seep by internet operated vehicle (IOV)[J]. PLoS One, 2017, 12(5): e0176917. doi: 10.1371/journal.pone.0176917
    [3]
    Laschi C, Mazzolai B, Cianchetti M. Soft robotics: technologies and systems pushing the boundaries of robot abilities[J]. Science Robotics, 2016, 1(1): eaah3690. doi: 10.1126/scirobotics.aah3690
    [4]
    Yoshida H, Aoki T, Osawa H, et al. A deepest depth ROV for sediment sampling and its sea trial result[C]//Proceedings of 2007 Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies. Tokyo: IEEE, 2007: 28−33.
    [5]
    Katzschmann R K, Marchese A D, Rus D. Hydraulic autonomous soft robotic fish for 3D swimming[M]//Hsieh M A, Khatib O, Kumar V. Experimental Robotics: The 14th International Symposium on Experimental Robotics. Cham: Springer, 2016: 405−420.
    [6]
    Marchese A D, Onal C D, Rus D. Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators[J]. Soft Robotics, 2014, 1(1): 75−87. doi: 10.1089/soro.2013.0009
    [7]
    Marras S, Porfiri M. Fish and robots swimming together: attraction towards the robot demands biomimetic locomotion[J]. Journal of the Royal Society Interface, 2012, 9(73): 1856−1868. doi: 10.1098/rsif.2012.0084
    [8]
    Cloitre A, Arensen B, Patrikalakis N M, et al. Propulsive performance of an underwater soft biomimetic batoid robot[C]//Proceedings of the Twenty-fourth International Ocean and Polar Engineering Conference. Busan: ISOPE, 2014: 1712−1717.
    [9]
    Li Tiefeng, Li Guorui, Liang Yiming, et al. Fast-moving soft electronic fish[J]. Science Advances, 2017, 3(4): e1602045. doi: 10.1126/sciadv.1602045
    [10]
    Suzumori K, Endo S, Kanda T, et al. A bending pneumatic rubber actuator realizing soft-bodied manta swimming robot[C]//Proceedings 2007 IEEE International Conference on Robotics and Automation. Rome: IEEE, 2007: 4975−4980.
    [11]
    Calisti M, Giorelli M, Levy G, et al. An octopus-bioinspired solution to movement and manipulation for soft robots[J]. Bioinspiration & Biomimetics, 2011, 6(3): 036002.
    [12]
    Purser A, Thomsen L, Barnes C, et al. Temporal and spatial benthic data collection via an internet operated Deep Sea Crawler[J]. Methods in Oceanography, 2013, 5: 1−18. doi: 10.1016/j.mio.2013.07.001
    [13]
    Picardi G, Chellapurath M, Iacoponi S, et al. Bioinspired underwater legged robot for seabed exploration with low environmental disturbance[J]. Science Robotics, 2020, 5(42): eaaz1012. doi: 10.1126/scirobotics.aaz1012
    [14]
    Song Zhuoyuan, Marburg A, Manalang D. Resident subsea robotic systems: a review[J]. Marine Technology Society Journal, 2020, 54(5): 21−31 doi: 10.4031/MTSJ.54.5.4
    [15]
    Singh H, Can Ali, Eustice R, et al. Seabed AUV offers new platform for high-resolution imaging[J]. Eos, Transactions American Geophysical Union, 2004, 85(31): 289−296.
    [16]
    Albiez J, Joyeux S, Gaudig C, et al. FlatFish—a compact subsea-resident inspection AUV[C]//Proceedings of the OCEANS 2015-MTS/IEEE Washington. Washington: IEEE, 2015.
    [17]
    Bettle M C, Gerber A G, Watt G D. Unsteady analysis of the six DOF motion of a buoyantly rising submarine[J]. Computers & Fluids, 2009, 38(9): 1833−1849.
    [18]
    Borlaug I L G, Pettersen K Y, Gravdahl J T. Combined kinematic and dynamic control of vehicle-manipulator systems[J]. Mechatronics, 2020, 69: 102380. doi: 10.1016/j.mechatronics.2020.102380
    [19]
    Phillips A, Furlong M, Turnock S R. The use of computational fluid dynamics to assess the hull resistance of concept autonomous underwater vehicles[C]//Proceedings of the OCEANS 2007-Europe. Aberdeen: IEEE, 2007: 1−6.
    [20]
    Phillips A B, Turnock S R, Furlong M. The use of computational fluid dynamics to aid cost-effective hydrodynamic design of autonomous underwater vehicles[C]//Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2010, 224(4): 239−254.
    [21]
    Li Yongcheng, Hu Jianxin, Zhao Qiuzhuo, et al. Hydrodynamic performance of autonomous underwater gliders with active twin undulatory wings of different aspect ratios[J]. Journal of Marine Science and Engineering, 2020, 8(7): 476. doi: 10.3390/jmse8070476
    [22]
    Li Yongcheng, Pan Dingyi, Zhao Qiaosheng, et al. Hydrodynamic performance of an autonomous underwater glider with a pair of bioinspired hydro wings—A numerical investigation[J]. Ocean Engineering, 2018, 163: 51−57. doi: 10.1016/j.oceaneng.2018.05.052
    [23]
    Sun Tongshuai, Chen Guangyao, Yang Shaoqiong, et al. Design and optimization of a bio-inspired hull shape for AUV by surrogate model technology[J]. Engineering Applications of Computational Fluid Mechanics, 2021, 15(1): 1057−1074. doi: 10.1080/19942060.2021.1940287
    [24]
    Honaryar A, Ghiasi M. Design of a bio-inspired hull shape for an AUV from hydrodynamic stability point of view through experiment and numerical analysis[J]. Journal of Bionic Engineering, 2018, 15(6): 950−959. doi: 10.1007/s42235-018-0083-z
    [25]
    Alvarez A, Bertram V, Gualdesi L. Hull hydrodynamic optimization of autonomous underwater vehicles operating at snorkeling depth[J]. Ocean Engineering, 2009, 36(1): 105−112. doi: 10.1016/j.oceaneng.2008.08.006
    [26]
    Divsalar K. Improving the hydrodynamic performance of the SUBOFF bare hull model: a CFD approach[J]. Acta Mechanica Sinica, 2020, 36(1): 44−56. doi: 10.1007/s10409-019-00913-7
    [27]
    Du Xiaoxu, Wang Huan, Hao Chengzhi, et al. Analysis of hydrodynamic characteristics of unmanned underwater vehicle moving close to the sea bottom[J]. Defence Technology, 2014, 10(1): 76−81. doi: 10.1016/j.dt.2014.01.007
    [28]
    Salari M, Rava A. Numerical investigation of hydrodynamic flow over an AUV moving in the water-surface vicinity considering the laminar-turbulent transition[J]. Journal of Marine Science and Application, 2017, 16(3): 298−304. doi: 10.1007/s11804-017-1422-x
    [29]
    Wu Lihong, Li Yiping, Su Shaojuan, et al. Hydrodynamic analysis of AUV underwater docking with a cone-shaped dock under ocean currents[J]. Ocean Engineering, 2014, 85: 110−126. doi: 10.1016/j.oceaneng.2014.04.022
    [30]
    Wang Xihui, Shi Yao, Pan Guang, et al. Numerical research on the high-speed water entry trajectories of AUVs with asymmetric nose shapes[J]. Ocean Engineering, 2021, 234: 109274. doi: 10.1016/j.oceaneng.2021.109274
    [31]
    da Silva Costa G, Ruiz A, Reis M A, et al. Numerical analysis of stability and manoeuvrability of Autonomous Underwater Vehicles (AUV) with fishtail shape[J]. Ocean Engineering, 2017, 144: 320−326. doi: 10.1016/j.oceaneng.2017.08.030
    [32]
    朝黎明. 仿蝠鲼自主变形翼水动力性能研究[D]. 西安: 西北工业大学, 2019.

    Zhao Liming. Hydrodynamic performance of actively mata-inspired deformed foil[D]. Xi’an: Northwestern Polytechnical University, 2019.
    [33]
    Lin Yuan, Huang Yue, Zhu Hai, et al. Simulation study on the hydrodynamic resistance and stability of a disk-shaped autonomous underwater helicopter[J]. Ocean Engineering, 2021, 219: 108385. doi: 10.1016/j.oceaneng.2020.108385
    [34]
    An Xinyu, Chen Ying, Huang Haocai. Parametric design and optimization of the profile of autonomous underwater helicopter based on NURBS[J]. Journal of Marine Science and Engineering, 2021, 9(6): 668. doi: 10.3390/jmse9060668
    [35]
    Chen Chenwei, Chen Ying, Cai Qianwen. Hydrodynamic-interaction analysis of an autonomous underwater hovering vehicle and ship with wave effects[J]. Symmetry, 2019, 11(10): 1213. doi: 10.3390/sym11101213
    [36]
    Chen Chenwei, Jiang Yong, Huang Haocai, et al. Computational fluid dynamics study of the motion stability of an autonomous underwater helicopter[J]. Ocean Engineering, 2017, 143: 227−239. doi: 10.1016/j.oceaneng.2017.07.020
    [37]
    吴玉崭, 张平. 推力矢量对飞机敏捷性影响的研究[C]//第13届中国系统仿真技术及其应用学术年会论文集. 大理: 美国科研出版社, 2011.

    Wu Yuzhan, Zhang Ping. Research on the influence of thrust vectoring on aircraft agility[C]//Proceedings of the 13th China Annual Conference on System Simulation Technology and Its Applications. Dali: Scientific Research Publishing, 2011.
    [38]
    王博. 基于飞行品质、敏捷性要求的控制律设计方法研究[D]. 南京: 南京航空航天大学, 2008.

    Wang Bo. Research on a control law design method considering flying qualities and agility[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008.
    [39]
    Kumar V S, Rajagopal P. Optimising the turning performance of serial split-hull underwater vehicles[J]. Ocean Engineering, 2022, 261: 112099. doi: 10.1016/j.oceaneng.2022.112099
    [40]
    Gao Dongqi, Wang Tong, Qin Fenghua, et al. Design, fabrication, and testing of a maneuverable underwater vehicle with a hybrid propulsor[J]. Biomimetic Intelligence and Robotics, 2022, 2(4): 100072. doi: 10.1016/j.birob.2022.100072
    [41]
    Low K H, Willy A. Biomimetic motion planning of an undulating robotic fish fin[J]. Journal of Vibration and Control, 2006, 12(12): 1337−1359. doi: 10.1177/1077546306070597
    [42]
    Hu Tianjiang, Wang Guangming, Shen Lincheng, et al. A novel conceptual fish-like robot inspired by rhinecanthus aculeatus[C]//Proceedings of the 9th International Conference on Control, Automation, Robotics and Vision. Singapore: IEEE, 2006: 1−5.
    [43]
    段斐. 微小型水下机器人运动仿真研究[D]. 哈尔滨: 哈尔滨工程大学, 2012.

    Duan Fei. Research on motion simulation for mini autonomous underwater vehicle[D]. Harbin: Harbin Engineering University, 2012.
    [44]
    Lekkas A M, Fossen T I. Minimization of cross-track and along-track errors for path tracking of marine underactuated vehicles[C]//Proceedings of the 2014 European Control Conference. Strasbourg: IEEE, 2014: 3004−3010.
    [45]
    Fredriksen E, Pettersen K Y. Global κ-exponential way-point maneuvering of ships: theory and experiments[J]. Automatica, 2006, 42(4): 677−687. doi: 10.1016/j.automatica.2005.12.020
    [46]
    Fossen T I, Breivik M, Skjetne R. Line-of-sight path following of underactuated marine craft[J]. IFAC Proceedings Volumes, 2003, 36(21): 244−249.
    [47]
    Lekkas A M, Fossen T I. A time-varying lookahead distance guidance law for path following[J]. IFAC Proceedings Volumes, 2012, 45(27): 398−403. doi: 10.3182/20120919-3-IT-2046.00068
    [48]
    Liao Yulei, Wan Lei, Zhuang Jiayuan. Backstepping dynamical sliding mode control method for the path following of the underactuated surface vessel[J]. Procedia Engineering, 2011, 15: 256−263. doi: 10.1016/j.proeng.2011.08.051
    [49]
    Güneş A, Güllü V A Ï. Performance comparison of target tracking filters in underwater multipath environments[C]//Proceedings of the 29th Signal Processing and Communications Applications Conference. Istanbul: IEEE, 2021: 1−4.
    [50]
    Song Haiyan, Yang Changyi. Anti-multipath near-field localization in multi-path underwater acoustic channel[C]//Proceedings of 2021 IEEE International Conference on Consumer Electronics-Taiwan. Penghu, China: IEEE, 2021: 1−2.
    [51]
    Lohrasbipeydeh H, Mosayyebpour S, Gulliver T A. Single hydrophone passive acoustic sperm whale range and depth estimation[C]//Proceedings of 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver: IEEE, 2013: 754−757.
    [52]
    孙华, 陈韶华, 龙小民. 基于多径时延估计的单水听器被动定位[J]. 水雷战与舰船防护, 2016, 24(1): 11−13, 23.

    Sun Hua, Chen Shaohua, Long Xiaomin. Passive localization with single hydrophone based on multipath time delay estimation[J]. Mine Warfare & Self-Defence, 2016, 24(1): 11−13, 23.
    [53]
    Dos Santos M M, De Giacomo G G, Drews P L J, et al. Matching color aerial images and underwater sonar images using deep learning for underwater localization[J]. IEEE Robotics and Automation Letters, 2020, 5(4): 6365−6370. doi: 10.1109/LRA.2020.3013852
    [54]
    Zhang Jing, Cao Yu, Han Guangyao, et al. Deep neural network-based underwater OFDM receiver[J]. IET Communications, 2019, 13(13): 1998−2002. doi: 10.1049/iet-com.2019.0243
    [55]
    Lee-Leon A, Yuen C, Herremans D. Underwater acoustic communication receiver using deep belief network[J]. IEEE Transactions on Communications, 2021, 69(6): 3698−3708. doi: 10.1109/TCOMM.2021.3063353
    [56]
    Rauchenstein L T, Vishnu A, Li Xinya, et al. Improving underwater localization accuracy with machine learning[J]. Review of Scientific Instruments, 2018, 89(7): 074902. doi: 10.1063/1.5012687
    [57]
    Yan Jing, Meng Yuan, Yang Xian, et al. Privacy-preserving localization for underwater sensor networks via deep reinforcement learning[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 1880−1895. doi: 10.1109/TIFS.2020.3045320
    [58]
    Kawasaki T, Fukasawa T, Noguchi T, et al. Development of AUV “marine bird” with underwater docking and recharging system[C]//Proceedings of 2003 International Conference Physics and Control. Proceedings. Tokyo: IEEE, 2003: 166−170.
    [59]
    Oiler J, Anderson G, Bana V, et al. Thermal and biofouling effects on underwater wireless power transfer[C]//Proceedings of 2015 IEEE Wireless Power Transfer Conference. Boulder: IEEE, 2015: 1−4.
    [60]
    Gish L A. Design of an AUV recharging system[D]. Cambridge: Massachusetts Institute of Technology, 2004.
    [61]
    Miller B D. Design of an AUV recharging system[D]. Cambridge: Massachusetts Institute of Technology, 2005.
    [62]
    Kawasaki T, Noguchi T, Fukasawa T, et al. “Marine Bird”, a new experimental AUV-results of docking and electric power supply tests in sea trials[C]//Proceedings of the Oceans '04 MTS/IEEE Techno-Ocean '04. Kobe: IEEE, 2004: 1738–1744.
    [63]
    Kojiya T, Sato F, Matsuki H, et al. Automatic power supply system to underwater vehicles utilizing non-contacting technology[C]//Proceedings of the Oceans '04 MTS/IEEE Techno-Ocean '04. Kobe: IEEE, 2014: 2341−2345.
    [64]
    Kojiya T, Sato F, Matsuki H, et al. Construction of non-contacting power feeding system to underwater vehicle utilizing electro magnetic induction[C]//Proceedings of the Europe Oceans 2005. Brest: IEEE, 2005: 709−712.
    [65]
    Allen B, Austin T, Forrester N, et al. Autonomous docking demonstrations with enhanced REMUS technology[C]//Proceedings of the OCEANS 2006. Boston: IEEE, 2006: 1−6.
    [66]
    张强, 王玉峰. 海洋浮标的非接触式电能与数据传输[J]. 仪器仪表学报, 2010, 31(11): 2615−2621. doi: 10.19650/j.cnki.cjsi.2010.11.034

    Zhang Qiang, Wang Yufeng. Noncontact power and data delivery for ocean observation mooring buoy[J]. Chinese Journal of Scientific Instrument, 2010, 31(11): 2615−2621. doi: 10.19650/j.cnki.cjsi.2010.11.034
    [67]
    Cai Chengye, Rong Zhenwei, Chen Zheng, et al. A resident subsea docking system with a real-time communication buoy moored by an electro-optical-mechanical cable[J]. Ocean Engineering, 2023, 271: 113729. doi: 10.1016/j.oceaneng.2023.113729
    [68]
    Chen Chenwei, Lu Yifan. Computational fluid dynamics study of water entry impact forces of an airborne-launched, axisymmetric, disk-type Autonomous underwater hovering vehicle[J]. Symmetry, 2019, 11(9): 1100. doi: 10.3390/sym11091100
    [69]
    Guo Jin, Lin Yuan, Lin Peiwen, et al. Study on hydrodynamic characteristics of the disk-shaped autonomous underwater helicopter over sea-beds[J]. Ocean Engineering, 2022, 266: 113132. doi: 10.1016/j.oceaneng.2022.113132
    [70]
    Lin Yuan, Guo Jin, Li Haonan, et al. Improvement of hydrodynamic performance of the disk-shaped autonomous underwater helicopter by local shape modification[J]. Ocean Engineering, 2022, 260: 112056. doi: 10.1016/j.oceaneng.2022.112056
    [71]
    石凯, 王晓辉, 徐会希, 等. 水下直升机无模型参数自适应滑模控制[J]. 舰船科学技术, 2022, 44(10): 73−79.

    Shi Kai, Wang Xiaohui, Xu Huixi, et al. Model-free parameter adaptive sliding mode control for autonomous underwater helicopters[J]. Ship Science and Technology, 2022, 44(10): 73−79.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article views (482) PDF downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return