Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 45 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
Lei Qing,Wang Guozhi,Zhao Fufeng, et al. Implications for magmatic evolution of changes in plagioclase composition in the 26°S basalts, Southern Mid-Atlantic Ridge[J]. Haiyang Xuebao,2023, 45(11):62–75 doi: 10.12284/hyxb2023152
Citation: Lei Qing,Wang Guozhi,Zhao Fufeng, et al. Implications for magmatic evolution of changes in plagioclase composition in the 26°S basalts, Southern Mid-Atlantic Ridge[J]. Haiyang Xuebao,2023, 45(11):62–75 doi: 10.12284/hyxb2023152

Implications for magmatic evolution of changes in plagioclase composition in the 26°S basalts, Southern Mid-Atlantic Ridge

doi: 10.12284/hyxb2023152
  • Received Date: 2023-04-11
  • Rev Recd Date: 2023-07-21
  • Available Online: 2023-10-23
  • Publish Date: 2023-11-30
  • The composition and texture characteristics of plagioclase in basalt from the 26°S hydrothermal field of the Southern Mid-Atlantic Ridge provide an important basis for the study of magmatic evolution characteristics. On the basis of observing the petrography of basalt and analyzing the composition of plagioclase, the structure and composition of plagioclase at different stages are compared to explore the process of magma evolution. The results show that the study area is mainly composed of porphyritic basalt, and plagioclase porphyries are commonly characterized by glomerocryst structures, oscillatory-zoned, dissolved and resorbed rim, and growth structures. The plagioclase in the matrix is mainly acicular and swallow-tailed crystals; the basalts in the SMAR-26°S hydrothermal zone are mainly sodium tholeiitic basalts. In the early stage of magma evolution, bytownite was mainly formed, while in the late stage, labradorite was mainly formed. Throughout the entire evolution process, the content of CaO and Al2O3 decreases, while the content of SiO2, Na2O, FeO, and MgO increases; from the core to rim of plagioclase phenocrysts and then to plagioclase microcrystalline in the matrix, the An values decreases overall. The An values in the rim of plagioclase phenocryst partially overlaps with the An values of plagioclase microlites in the matrix, resulting in a gradual decrease in temperature. These represent the changes from the magma origin area to magma eruption. After the formation of mantle magma, it rapidly rises and erupts to form basalt. During the upwelling process, it may undergo the process of decompression accompanied by volatiles escaping, dissolving in the deep, supersaturated crystallizing of the melt, mixing of low-Si same sourced magma, and syn-eruptive fast decompression of degassed magma.
  • loading
  • [1]
    Smith R K, Lofgren G E. An analytical and experimental study of zoning in plagioclase[J]. Lithos, 1983, 16(2): 153−168. doi: 10.1016/0024-4937(83)90012-9
    [2]
    Tsuchiyama A. Dissolution kinetics of plagioclase in the melt of the system diopside-albite-anorthite, and origin of dusty plagioclase in andesites[J]. Contributions to Mineralogy and Petrology, 1985, 89(1): 1−16. doi: 10.1007/BF01177585
    [3]
    Nelson S T, Montana A. Sieve-textured plagioclase in volcanic rocks produced by rapid decompression[J]. American Mineralogist, 1992, 77(11): 1242−1249.
    [4]
    Nakamura M, Shimakita S. Dissolution origin and syn-entrapment compositional change of melt inclusion in plagioclase[J]. Earth and Planetary Science Letters, 1998, 161(1/4): 119−133. doi: 10.1016/S0012-821X(98)00144-7
    [5]
    Pearce T H, Russell J K, Wolfson I. Laser-interference and nomarski interference imaging of zoning profiles in plagioclase phenocrysts from the may 18, 1980, eruption of Mount St. Helens, Washington[J]. American Mineralogist, 1987, 72(11/12): 1131−1143.
    [6]
    Johannes W, Koepke J, Behrens H. Partial melting reactions of plagioclases and plagioclase-bearing systems[M]//Parsons I. Feldspars and their Reactions. Dordrecht: Springer, 1994: 161−194.
    [7]
    Singer B S, Dungan M A, Layne G D. Textures and Sr, Ba, Mg, Fe, K and Ti compositional profiles in volcanic plagioclase: clues to the dynamics of calc-alkaline magma chambers[J]. American Mineralogist, 1995, 80(7/8): 776−798. doi: 10.2138/am-1995-7-815
    [8]
    Morse S A. Cation diffusion in plagioclase feldspar[J]. Science, 1984, 225(4661): 504−505. doi: 10.1126/science.225.4661.504
    [9]
    Grove T L, Baker M B, Kinzler R J. Coupled CaAl-NaSi diffusion in plagioclase feldspar: experiments and applications to cooling rate speedometry[J]. Geochimica et Cosmochimica Acta, 1984, 48(10): 2113−2121. doi: 10.1016/0016-7037(84)90391-0
    [10]
    Kamenetsky V S, Everard J L, Crawford A J, et al. Enriched end-member of primitive MORB melts: petrology and geochemistry of glasses from macquarie island (SW Pacific)[J]. Journal of Petrology, 2000, 41(3): 411−430. doi: 10.1093/petrology/41.3.411
    [11]
    Cashman K V. Groundmass crystallization of mount st. helens dacite, 1980–1986: a tool for interpreting shallow magmatic processes[J]. Contributions to Mineralogy and Petrology, 1992, 109(4): 431−449. doi: 10.1007/BF00306547
    [12]
    陈小明, 谭清泉, 赵广涛. 海底玄武岩中斜长石研究及其岩石学意义[J]. 岩石学报, 2002, 18(4): 482−488. doi: 10.3321/j.issn:1000-0569.2002.04.006

    Chen Xiaoming, Tan Qingquan, Zhao Guangtao. Plagioclases from the basalt of okinawa trough and its petrogenesis significance[J]. Acta Petrologica Sinica, 2002, 18(4): 482−488. doi: 10.3321/j.issn:1000-0569.2002.04.006
    [13]
    祁奇, 来志庆, 龙晓军, 等. 南大西洋洋中脊玄武岩中斜长石特征及其岩石学意义[J]. 中国海洋大学学报(自然科学版), 2016, 46(3): 105−112. doi: 10.16441/j.cnki.hdxb.20140406

    Qi Qi, Lai Zhiqing, Long Xiaojun, et al. Characteristics and petrogenesis significance of plagioclases in basalt from the South Mid-Atlantic Ridge[J]. Periodical of Ocean University of China, 2016, 46(3): 105−112. doi: 10.16441/j.cnki.hdxb.20140406
    [14]
    何欣, 孙国胜, 初凤友, 等. 中太平洋CA海山玄武岩中斜长石化学成分特征及地质意义[J]. 海洋学研究, 2017, 35(2): 23−32. doi: 10.3969/j.issn.1001-909X.2017.02.003

    He Xin, Sun Guosheng, Chu Fengyou, et al. Chemical characteristics and geological implication of plagioclase in CA seamount basalts from the Middle Pacific[J]. Journal of Marine Sciences, 2017, 35(2): 23−32. doi: 10.3969/j.issn.1001-909X.2017.02.003
    [15]
    Viccaro M, Giacomoni P P, Ferlito C, et al. Dynamics of magma supply at Mt. Etna Volcano (Southern Italy) as revealed by textural and compositional features of plagioclase phenocrysts[J]. Lithos, 2010, 116(1/2): 77−91. doi: 10.1016/j.lithos.2009.12.012
    [16]
    Bennett E N, Lissenberg C J, Cashman K V. The significance of plagioclase textures in mid-ocean ridge basalt (Gakkel Ridge, Arctic Ocean)[J]. Contributions to Mineralogy and Petrology, 2019, 174(6): 49. doi: 10.1007/s00410-019-1587-1
    [17]
    Hammer J E, Rutherford M J. An experimental study of the kinetics of decompression-induced crystallization in silicic melt[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B1): ECV 8-1–ECV 8-24.
    [18]
    Anderson A T. Probable relations between plagioclase zoning and magma dynamics, Fuego Volcano, Guatemala[J]. American Mineralogist, 1984, 69(7/8): 660−676.
    [19]
    Lofgren G. An experimental study of plagioclase crystal morphology; isothermal crystallization[J]. American Journal of Science, 1974, 274(3): 243−273. doi: 10.2475/ajs.274.3.243
    [20]
    Niu Yaoling, Batiza R. Magmatic processes at a slow spreading ridge segment: 26°S Mid-Atlantic Ridge[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B10): 19719−19740. doi: 10.1029/94JB01663
    [21]
    Fan Lei, Wang Guozhi, Holzheid A, et al. Sulfur and copper isotopic composition of seafloor massive sulfides and fluid evolution in the 26°S hydrothermal field, Southern Mid-Atlantic Ridge[J]. Marine Geology, 2021, 435: 106436. doi: 10.1016/j.margeo.2021.106436
    [22]
    Fan Lei, Wang Guozhi, Holzheid A, et al. Isocubanite-chalcopyrite intergrowths in the Mid-Atlantic Ridge 26°S hydrothermal vent sulfides[J]. Geochemistry, 2021, 81(4): 125795. doi: 10.1016/j.chemer.2021.125795
    [23]
    王国槐. 大西洋中脊玄武岩主量元素及熔体粘度的统计特征及其对热液喷口的指示[D]. 青岛: 自然资源部第一海洋研究所, 2018.

    Wang Guohuai. Major elements and viscosity statistical characteristics of basalt on the Mid-Atlantic Ridge and their implications for hydrothermal vents[D]. Qingdao: First Institute of Oceanography, Ministry of Natural Resources, 2018.
    [24]
    Carbotte S, Welch S M, Macdonald K C. Spreading rates, rift propagation, and fracture zone offset histories during the past 5 my on the Mid-Atlantic Ridge: 25°–27°30′ S and 31°–34°30′S[J]. Marine Geophysical Researches, 1991, 13(1): 51−80. doi: 10.1007/BF02428195
    [25]
    Batiza R, Fox P J, Vogt P R, et al. Morphology, abundance, and chemistry of near-ridge seamounts in the vicinity of the Mid-Atlantic Ridge ~26°S[J]. The Journal of Geology, 1989, 97(2): 209−220, doi: 10.1086/629295
    [26]
    李滔. 大西洋中脊26°S热液区多金属硫化物成矿作用分析[D]. 成都: 成都理工大学, 2014.

    Li Tao. Mineralization of polymetallic sulfides on Mid-Atlantic Ridge (MAR) at 26°S[D]. Chengdu: Chengdu University of Technology, 2014.
    [27]
    范蕾, 王国芝, 石学法, 等. 大西洋中脊26°S热液区玄武岩地球化学特征及其地幔源区性质[J]. 矿物岩石, 2020, 40(1): 9−20. doi: 10.19719/j.cnki.1001-6872.2020.01.02

    Fan Lei, Wang Guozhi, Shi Xuefa, et al. Geochemical characteristics of basalts and their mantle source features at 26°S hydrothermal field on the Mid-Atlantic Ridge[J]. Mineralogy and Petrology, 2020, 40(1): 9−20. doi: 10.19719/j.cnki.1001-6872.2020.01.02
    [28]
    Sugawara T. Thermodynamic analysis of Fe and Mg partitioning between plagioclase and silicate liquid[J]. Contributions to Mineralogy and Petrology, 2000, 138(2): 101−113. doi: 10.1007/s004100050011
    [29]
    Sisson T W, Grove T L. Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism[J]. Contributions to Mineralogy and Petrology, 1993, 113(2): 143−166. doi: 10.1007/BF00283225
    [30]
    Couch S, Sparks R S J, Carroll M R. The kinetics of degassing-induced crystallization at soufriere hills volcano, montserrat[J]. Journal of Petrology, 2003, 44(8): 1477−1502. doi: 10.1093/petrology/44.8.1477
    [31]
    张国良. 东太平洋海隆13°N附近玄武岩特征及其对岩浆作用的指示意义[D]. 青岛: 中国科学院海洋研究所, 2010.

    Zhang Guoliang. Characteristics and implications for magmatism of the morbs in the East Pacific Rise 13°N[D]. Qingdao: Insititute of Oceanology, Chinese Academy of Sciences, 2010.
    [32]
    Housh T B, Luhr J F. Plagioclase-melt equilibria in hydrous systems[J]. American Mineralogist, 1991, 76(3/4): 477−492.
    [33]
    De Maisonneuve C B, Dungan M A, Bachmann O, et al. Petrological insights into shifts in eruptive styles at Volcán Llaima (Chile)[J]. Journal of Petrology, 2013, 54(2): 393−420. doi: 10.1093/petrology/egs073
    [34]
    Mathez E A. Refinement of the kudo-weill plagioclase thermometer and its application to basaltic rocks[J]. Contributions to Mineralogy and Petrology, 1973, 41(1): 61−72. doi: 10.1007/BF00377654
    [35]
    Kudo A M, Weill D F. An igneous plagioclase thermometer[J]. Contributions to Mineralogy and Petrology, 1970, 25(1): 52−65. doi: 10.1007/BF00383062
    [36]
    Deffeyes K S. Plume convection with an upper-mantle temperature inversion[J]. Nature, 1972, 240(5383): 539−544. doi: 10.1038/240539a0
    [37]
    Morgan W J. Plate motions and deep mantle convection[J]. Geological Society of America Memoir, 1972, 7−22.
    [38]
    Yuen D A, Peltier W R. Mantle plumes and the thermal stability of the D″ layer[J]. Geophysical Research Letters, 1980, 7(9): 625−628. doi: 10.1029/GL007i009p00625
    [39]
    Kuo L C, Kirkpatrick R J. Pre-eruption history of phyric basalts from DSDP legs 45 and 46: evidence from morphology and zoning patterns in plagioclase[J]. Contributions to Mineralogy and Petrology, 1982, 79(1): 13−27. doi: 10.1007/BF00376957
    [40]
    李原鸿, 黄方, 于慧敏, 等. 加勒比海小安德列斯岛弧Kick’em Jenny海底火山岩的斜长石成分环带: 示踪大洋岛弧岩浆房的演化[J]. 岩石学报, 2016, 32(2): 605−616.

    Li Yuanhong, Huang Fang, Yu Huimin, et al. Plagioclase zoning in submarine volcano Kick’em jenny, lesser antilles arc: insights into magma evolution processes in oceanic arc magma chamber[J]. Acta Petrologica Sinica, 2016, 32(2): 605−616.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article views (255) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return