Citation: | Wu Ke,Wang Changying,Huang Rui, et al. Automatic extraction of green tide in areas with clouds or solar flares in HY-1C/D CZI multispectral images[J]. Haiyang Xuebao,2023, 45(10):168–182 doi: 10.12284/hyxb2023151 |
[1] |
Hiraoka M, Ohno M, Kawaguchi S, et al. Crossing test among floating Ulva thalli forming ‘green tide’ in Japan[J]. Hydrobiologia, 2004, 512(1): 239−245.
|
[2] |
衣立, 张苏平, 殷玉齐. 2009年黄海绿潮浒苔爆发与漂移的水文气象环境[J]. 中国海洋大学学报, 2010, 40(10): 15−23.
Yi Li, Zhang Suping, Yin Yuqi. Influnce of environmental hydro-meteorological conditions to Enteromorpha prolifera blooms in Yellow Sea, 2009[J]. Periodical of Ocean University of China, 2010, 40(10): 15−23.
|
[3] |
Liu Dongyan, Keesing J K, He Peimin, et al. The world’s largest macroalgal bloom in the Yellow Sea, China: formation and implications[J]. Estuarine, Coastal and Shelf Science, 2013, 129: 2−10. doi: 10.1016/j.ecss.2013.05.021
|
[4] |
Hu Lianbo, Zeng Kan, Hu Chuanmin, et al. On the remote estimation of Ulva prolifera areal coverage and biomass[J]. Remote Sensing of Environment, 2019, 223: 194−207. doi: 10.1016/j.rse.2019.01.014
|
[5] |
Qi Lin, Hu Chuanmin, Xing Qianguo, et al. Long-term trend of Ulva prolifera blooms in the western Yellow Sea[J]. Harmful Algae, 2016, 58: 35−44. doi: 10.1016/j.hal.2016.07.004
|
[6] |
Qi Lin, Hu Chuanmin. To what extent can Ulva and Sargassum be detected and separated in satellite imagery?[J]. Harmful Algae, 2021, 103: 102001. doi: 10.1016/j.hal.2021.102001
|
[7] |
Hu Lianbo, Hu Chuanmin, He Mingxia. Remote estimation of biomass of Ulva prolifera macroalgae in the Yellow Sea[J]. Remote Sensing of Environment, 2017, 192: 217−227. doi: 10.1016/j.rse.2017.01.037
|
[8] |
Hu Chuanmin, Li Daqiu, Chen Changsheng, et al. On the recurrent Ulva prolifera blooms in the Yellow Sea and East China Sea[J]. Journal of Geophysical Research: Oceans, 2010, 115(C5): C05017.
|
[9] |
Xing Qianguo, Hu Chuanmin, Tang Danling, et al. World’s largest macroalgal blooms altered phytoplankton biomass in summer in the Yellow Sea: satellite observations[J]. Remote Sensing, 2015, 7(9): 12297−12313. doi: 10.3390/rs70912297
|
[10] |
Nelson T A, Haberlin K, Nelson A V, et al. Ecological and physiological controls of species composition in green macroalgal blooms[J]. Ecology, 2008, 89(5): 1287−1298. doi: 10.1890/07-0494.1
|
[11] |
Hu Chuanmin, He Mingxia. Origin and offshore extent of floating algae in Olympic sailing area[J]. Eos, Transactions American Geophysical Union, 2008, 89(33): 302−303. doi: 10.1029/2008EO330002
|
[12] |
施英妮, 石立坚, 夏明, 等. HJ-1A/1B星CCD传感器数据在黄东海浒苔监测中的应用[J]. 遥感信息, 2012, 27(2): 47−50.
Shi Yingni, Shi Lijian, Xia Ming, et al. The application of HJ-1A/1B’s CCD data to entermorpha prolifera monitoring over the Yellow Sea and East Sea[J]. Remote Sensing Information, 2012, 27(2): 47−50.
|
[13] |
Hu Chuanmin. A novel ocean color index to detect floating algae in the global oceans[J]. Remote Sensing of Environment, 2009, 113(10): 2118−2129. doi: 10.1016/j.rse.2009.05.012
|
[14] |
Son Y B, Min J E, Ryu J H. Detecting massive green algae ( Ulva prolifera) blooms in the Yellow Sea and East China Sea using geostationary ocean color imager (GOCI) data[J]. Ocean Science Journal, 2012, 47(3): 359−375. doi: 10.1007/s12601-012-0034-2
|
[15] |
Xing Qianguo, Hu Chuanmin. Mapping macroalgal blooms in the Yellow Sea and East China Sea using HJ-1 and Landsat data: Application of a virtual baseline reflectance height technique[J]. Remote Sensing of Environment, 2016, 178: 113−126. doi: 10.1016/j.rse.2016.02.065
|
[16] |
薛瑞, 吴孟泉, 刘杨, 等. 基于HJ-1A/1B的2014年黄海海域浒苔灾害时空分布[J]. 海洋科学, 2016, 40(7): 115−123.
Xue Rui, Wu Mengquan, Liu Yang, et al. Spatial and temporal variability of Ulva prolifera in the Yellow Sea, China in 2014[J]. Marine Sciences, 2016, 40(7): 115−123.
|
[17] |
曾韬, 刘建强. “北京一号”小卫星在青岛近海浒苔灾害监测中的应用[J]. 遥感信息, 2009, 24(3): 34−37.
Zeng Tao, Liu Jianqiang. The application of Beijing-1 micro satellite data to algae disaster monitoring in the sea of Qingdao[J]. Remote Sensing Information, 2009, 24(3): 34−37.
|
[18] |
刘锦超, 刘建强, 丁静, 等. HY-1C卫星CZI载荷的黄海绿潮提取研究[J]. 海洋学报, 2022, 44(5): 1−11.
Liu Jinchao, Liu Jianqiang, Ding Jing, et al. A refined imagery algorithm to extract green tide in the Yellow Sea from HY-1C satellite CZI measurements[J]. Haiyang Xuebao, 2022, 44(5): 1−11.
|
[19] |
He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016: 770−778.
|
[20] |
Badrinarayanan V, Kendall A, Cipolla R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481−2495. doi: 10.1109/TPAMI.2016.2644615
|
[21] |
Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[C]//18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich: Springer, 2015: 234−241.
|
[22] |
Cui Binge, Zhang Haoqing, Jing Wei, et al. SRSe-net: super-resolution-based semantic segmentation network for green tide extraction[J]. Remote Sensing, 2022, 14(3): 710. doi: 10.3390/rs14030710
|
[23] |
Yu Haifei, Wang Changying, Li Jinhua, et al. Automatic extraction of green tide from GF-3 SAR images based on feature selection and deep learning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 10598−10613. doi: 10.1109/JSTARS.2021.3118374
|
[24] |
Wang Zhongyuan, Fang Zhixiang, Liang Jianfeng, et al. Estimating Ulva prolifera green tides of the Yellow Sea through ConvLSTM data fusion[J]. Environmental Pollution, 2023, 324: 121350. doi: 10.1016/j.envpol.2023.121350
|
[25] |
Shang Weitao, Gao Zhiqiang, Gao Meng, et al. Monitoring green tide in the Yellow Sea using high-resolution imagery and deep learning[J]. Remote Sensing, 2023, 15(4): 1101. doi: 10.3390/rs15041101
|
[26] |
Shi Wei, Wang Menghua. Green macroalgae blooms in the Yellow Sea during the spring and summer of 2008[J]. Journal of Geophysical Research: Oceans, 2009, 114(C12): C12010.
|
[27] |
Wang Mengqiu, Hu Chuanmin. Mapping and quantifying Sargassum distribution and coverage in the Central West Atlantic using MODIS observations[J]. Remote Sensing of Environment, 2016, 183: 350−367. doi: 10.1016/j.rse.2016.04.019
|
[28] |
苗珊珊. “长征”二号C运载火箭成功发射“海洋”一号C卫星[J]. 中国航天, 2018(9): 26.
Miao Shanshan. The CZ-2C carrier rocket successfully launched the HY-1C satellite[J]. Aerospace China, 2018(9): 26.
|
[29] |
刘建强, 蒋兴伟, 王丽丽, 等. 海洋一号C、D卫星组网观测与应用[J]. 卫星应用, 2021(9): 19−26. doi: 10.3969/j.issn.1674-9030.2021.09.007
Liu Jianqiang, Jiang Xingwei, Wang Lili, et al. Monitoring and application of the HY-1C and D satellites constellation[J]. Satellite Application, 2021(9): 19−26. doi: 10.3969/j.issn.1674-9030.2021.09.007
|
[30] |
李岩松, 赵慧洁, 李娜, 等. 基于中红外偏振的海面太阳耀光背景下的目标探测[J]. 中国激光, 2022, 49(19): 1910004. doi: 10.3788/CJL202249.1910004
Li Yansong, Zhao Huijie, Li Na, et al. Detection of marine targets covered in sun glint based on mid-infrared polarization[J]. Chinese Journal of Lasers, 2022, 49(19): 1910004. doi: 10.3788/CJL202249.1910004
|
[31] |
Wang Chen, Zhang Huaguo, Xu Qing, et al. Inversion of the refractive index of marine spilled oil using multi-angle sun glitter images acquired by the ASTER sensor[J]. Remote Sensing of Environment, 2022, 275: 113019. doi: 10.1016/j.rse.2022.113019
|
[32] |
刘建强, 曾韬, 梁超, 等. 海洋一号C卫星在自然灾害监测中的应用[J]. 卫星应用, 2020(6): 26−34.
Liu Jianqiang, Zeng Tao, Liang Chao, et al. Application of HY-1C satellite in natural disaster monitoring[J]. Satellite Application, 2020(6): 26−34.
|