Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 45 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
Wu Ke,Wang Changying,Huang Rui, et al. Automatic extraction of green tide in areas with clouds or solar flares in HY-1C/D CZI multispectral images[J]. Haiyang Xuebao,2023, 45(10):168–182 doi: 10.12284/hyxb2023151
Citation: Wu Ke,Wang Changying,Huang Rui, et al. Automatic extraction of green tide in areas with clouds or solar flares in HY-1C/D CZI multispectral images[J]. Haiyang Xuebao,2023, 45(10):168–182 doi: 10.12284/hyxb2023151

Automatic extraction of green tide in areas with clouds or solar flares in HY-1C/D CZI multispectral images

doi: 10.12284/hyxb2023151
  • Received Date: 2023-02-15
  • Rev Recd Date: 2023-06-13
  • Available Online: 2023-12-27
  • Publish Date: 2023-10-30
  • Multispectral images are greatly affected by factors such as clouds, fog, and solar flares, which makes it difficult to automatically extract high-precision green tides under complex weather conditions. Based on the multi-spectral images of my country’s HY-1C/D satellite CZI payload, using data mining technology to explore the difference in data distribution between green tide areas and non-green tide areas, we propose a high-precision and fully automatic green tide extraction method , which can be applied to HY-1C/D CZI sensor data. First of all, the thick cloud area is removed by preliminary extraction rules to achieve preliminary classification. Then, the correctly classified green tide samples and non-green tide samples were used as positive and negative samples respectively, and these samples were used as experimental data to train the decision tree model, and the automatic extraction rules of green tide were obtained according to the model. Finally, 5 strategies for correcting misclassifications were designed to achieve fully automatic extraction of green tides. In order to verify the effectiveness of the method, we collected 25 images of the green tide outbreak period in the Yellow Sea in 2021 for automatic detection experiments, and compared the experimental results with traditional index methods (NDVI, VB-FAH) and deep learning methods (ResNet50, U-Net). The results showed that the method outperformed other methods in terms of accuracy, Kappa coefficient, F1-Score, and MIoU. The accuracy of green tide extraction was higher in areas with thick clouds, thin clouds, cloudless clouds, cloud spots, and flares.
  • loading
  • [1]
    Hiraoka M, Ohno M, Kawaguchi S, et al. Crossing test among floating Ulva thalli forming ‘green tide’ in Japan[J]. Hydrobiologia, 2004, 512(1): 239−245.
    [2]
    衣立, 张苏平, 殷玉齐. 2009年黄海绿潮浒苔爆发与漂移的水文气象环境[J]. 中国海洋大学学报, 2010, 40(10): 15−23.

    Yi Li, Zhang Suping, Yin Yuqi. Influnce of environmental hydro-meteorological conditions to Enteromorpha prolifera blooms in Yellow Sea, 2009[J]. Periodical of Ocean University of China, 2010, 40(10): 15−23.
    [3]
    Liu Dongyan, Keesing J K, He Peimin, et al. The world’s largest macroalgal bloom in the Yellow Sea, China: formation and implications[J]. Estuarine, Coastal and Shelf Science, 2013, 129: 2−10. doi: 10.1016/j.ecss.2013.05.021
    [4]
    Hu Lianbo, Zeng Kan, Hu Chuanmin, et al. On the remote estimation of Ulva prolifera areal coverage and biomass[J]. Remote Sensing of Environment, 2019, 223: 194−207. doi: 10.1016/j.rse.2019.01.014
    [5]
    Qi Lin, Hu Chuanmin, Xing Qianguo, et al. Long-term trend of Ulva prolifera blooms in the western Yellow Sea[J]. Harmful Algae, 2016, 58: 35−44. doi: 10.1016/j.hal.2016.07.004
    [6]
    Qi Lin, Hu Chuanmin. To what extent can Ulva and Sargassum be detected and separated in satellite imagery?[J]. Harmful Algae, 2021, 103: 102001. doi: 10.1016/j.hal.2021.102001
    [7]
    Hu Lianbo, Hu Chuanmin, He Mingxia. Remote estimation of biomass of Ulva prolifera macroalgae in the Yellow Sea[J]. Remote Sensing of Environment, 2017, 192: 217−227. doi: 10.1016/j.rse.2017.01.037
    [8]
    Hu Chuanmin, Li Daqiu, Chen Changsheng, et al. On the recurrent Ulva prolifera blooms in the Yellow Sea and East China Sea[J]. Journal of Geophysical Research: Oceans, 2010, 115(C5): C05017.
    [9]
    Xing Qianguo, Hu Chuanmin, Tang Danling, et al. World’s largest macroalgal blooms altered phytoplankton biomass in summer in the Yellow Sea: satellite observations[J]. Remote Sensing, 2015, 7(9): 12297−12313. doi: 10.3390/rs70912297
    [10]
    Nelson T A, Haberlin K, Nelson A V, et al. Ecological and physiological controls of species composition in green macroalgal blooms[J]. Ecology, 2008, 89(5): 1287−1298. doi: 10.1890/07-0494.1
    [11]
    Hu Chuanmin, He Mingxia. Origin and offshore extent of floating algae in Olympic sailing area[J]. Eos, Transactions American Geophysical Union, 2008, 89(33): 302−303. doi: 10.1029/2008EO330002
    [12]
    施英妮, 石立坚, 夏明, 等. HJ-1A/1B星CCD传感器数据在黄东海浒苔监测中的应用[J]. 遥感信息, 2012, 27(2): 47−50.

    Shi Yingni, Shi Lijian, Xia Ming, et al. The application of HJ-1A/1B’s CCD data to entermorpha prolifera monitoring over the Yellow Sea and East Sea[J]. Remote Sensing Information, 2012, 27(2): 47−50.
    [13]
    Hu Chuanmin. A novel ocean color index to detect floating algae in the global oceans[J]. Remote Sensing of Environment, 2009, 113(10): 2118−2129. doi: 10.1016/j.rse.2009.05.012
    [14]
    Son Y B, Min J E, Ryu J H. Detecting massive green algae ( Ulva prolifera) blooms in the Yellow Sea and East China Sea using geostationary ocean color imager (GOCI) data[J]. Ocean Science Journal, 2012, 47(3): 359−375. doi: 10.1007/s12601-012-0034-2
    [15]
    Xing Qianguo, Hu Chuanmin. Mapping macroalgal blooms in the Yellow Sea and East China Sea using HJ-1 and Landsat data: Application of a virtual baseline reflectance height technique[J]. Remote Sensing of Environment, 2016, 178: 113−126. doi: 10.1016/j.rse.2016.02.065
    [16]
    薛瑞, 吴孟泉, 刘杨, 等. 基于HJ-1A/1B的2014年黄海海域浒苔灾害时空分布[J]. 海洋科学, 2016, 40(7): 115−123.

    Xue Rui, Wu Mengquan, Liu Yang, et al. Spatial and temporal variability of Ulva prolifera in the Yellow Sea, China in 2014[J]. Marine Sciences, 2016, 40(7): 115−123.
    [17]
    曾韬, 刘建强. “北京一号”小卫星在青岛近海浒苔灾害监测中的应用[J]. 遥感信息, 2009, 24(3): 34−37.

    Zeng Tao, Liu Jianqiang. The application of Beijing-1 micro satellite data to algae disaster monitoring in the sea of Qingdao[J]. Remote Sensing Information, 2009, 24(3): 34−37.
    [18]
    刘锦超, 刘建强, 丁静, 等. HY-1C卫星CZI载荷的黄海绿潮提取研究[J]. 海洋学报, 2022, 44(5): 1−11.

    Liu Jinchao, Liu Jianqiang, Ding Jing, et al. A refined imagery algorithm to extract green tide in the Yellow Sea from HY-1C satellite CZI measurements[J]. Haiyang Xuebao, 2022, 44(5): 1−11.
    [19]
    He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016: 770−778.
    [20]
    Badrinarayanan V, Kendall A, Cipolla R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481−2495. doi: 10.1109/TPAMI.2016.2644615
    [21]
    Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[C]//18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich: Springer, 2015: 234−241.
    [22]
    Cui Binge, Zhang Haoqing, Jing Wei, et al. SRSe-net: super-resolution-based semantic segmentation network for green tide extraction[J]. Remote Sensing, 2022, 14(3): 710. doi: 10.3390/rs14030710
    [23]
    Yu Haifei, Wang Changying, Li Jinhua, et al. Automatic extraction of green tide from GF-3 SAR images based on feature selection and deep learning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 10598−10613. doi: 10.1109/JSTARS.2021.3118374
    [24]
    Wang Zhongyuan, Fang Zhixiang, Liang Jianfeng, et al. Estimating Ulva prolifera green tides of the Yellow Sea through ConvLSTM data fusion[J]. Environmental Pollution, 2023, 324: 121350. doi: 10.1016/j.envpol.2023.121350
    [25]
    Shang Weitao, Gao Zhiqiang, Gao Meng, et al. Monitoring green tide in the Yellow Sea using high-resolution imagery and deep learning[J]. Remote Sensing, 2023, 15(4): 1101. doi: 10.3390/rs15041101
    [26]
    Shi Wei, Wang Menghua. Green macroalgae blooms in the Yellow Sea during the spring and summer of 2008[J]. Journal of Geophysical Research: Oceans, 2009, 114(C12): C12010.
    [27]
    Wang Mengqiu, Hu Chuanmin. Mapping and quantifying Sargassum distribution and coverage in the Central West Atlantic using MODIS observations[J]. Remote Sensing of Environment, 2016, 183: 350−367. doi: 10.1016/j.rse.2016.04.019
    [28]
    苗珊珊. “长征”二号C运载火箭成功发射“海洋”一号C卫星[J]. 中国航天, 2018(9): 26.

    Miao Shanshan. The CZ-2C carrier rocket successfully launched the HY-1C satellite[J]. Aerospace China, 2018(9): 26.
    [29]
    刘建强, 蒋兴伟, 王丽丽, 等. 海洋一号C、D卫星组网观测与应用[J]. 卫星应用, 2021(9): 19−26. doi: 10.3969/j.issn.1674-9030.2021.09.007

    Liu Jianqiang, Jiang Xingwei, Wang Lili, et al. Monitoring and application of the HY-1C and D satellites constellation[J]. Satellite Application, 2021(9): 19−26. doi: 10.3969/j.issn.1674-9030.2021.09.007
    [30]
    李岩松, 赵慧洁, 李娜, 等. 基于中红外偏振的海面太阳耀光背景下的目标探测[J]. 中国激光, 2022, 49(19): 1910004. doi: 10.3788/CJL202249.1910004

    Li Yansong, Zhao Huijie, Li Na, et al. Detection of marine targets covered in sun glint based on mid-infrared polarization[J]. Chinese Journal of Lasers, 2022, 49(19): 1910004. doi: 10.3788/CJL202249.1910004
    [31]
    Wang Chen, Zhang Huaguo, Xu Qing, et al. Inversion of the refractive index of marine spilled oil using multi-angle sun glitter images acquired by the ASTER sensor[J]. Remote Sensing of Environment, 2022, 275: 113019. doi: 10.1016/j.rse.2022.113019
    [32]
    刘建强, 曾韬, 梁超, 等. 海洋一号C卫星在自然灾害监测中的应用[J]. 卫星应用, 2020(6): 26−34.

    Liu Jianqiang, Zeng Tao, Liang Chao, et al. Application of HY-1C satellite in natural disaster monitoring[J]. Satellite Application, 2020(6): 26−34.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(4)

    Article views (166) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return