Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 45 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
Zhang Zijuan,Dai Wenfang,Xue Qinggang, et al. Effects of acute salinity stress on the gut bacterial community structure and functional potentials of Sinonvacula constricta[J]. Haiyang Xuebao,2023, 45(11):131–141 doi: 10.12284/hyxb2023146
Citation: Zhang Zijuan,Dai Wenfang,Xue Qinggang, et al. Effects of acute salinity stress on the gut bacterial community structure and functional potentials of Sinonvacula constricta[J]. Haiyang Xuebao,2023, 45(11):131–141 doi: 10.12284/hyxb2023146

Effects of acute salinity stress on the gut bacterial community structure and functional potentials of Sinonvacula constricta

doi: 10.12284/hyxb2023146
  • Received Date: 2023-04-06
  • Rev Recd Date: 2023-07-10
  • Available Online: 2023-10-31
  • Publish Date: 2023-11-30
  • Salinity is a crucial factor affecting the gut microbial homeostasis of aquatic animals, which has a significant impact on their growth and health. Sinonovacula constricta, a buried cultivated bivalve in mudflat, is frequently affected by salinity fluctuation. However, it remains unclear whether salinity has undesirable effects on the gut tissue and microbial community of S. constricta. To address these concerns, this study set up three different salinity stress groups: low salinity (5), normal salinity (20) and high salinity (35), with normal salinity 20 at 0 day as the control. Samples of S. constricta were collected before stress (i.e., normal salinity 20, 0 day) and after stress for 15 days, and were analyzed the differences in gut tissue structure, gut microbial compositions and potential functions via using the histopathology, 16S rRNA high-throughput sequencing technology and PICRUSt2. Simultaneously, the guts from S. constricta under normal salinity at 0 day were taken for comparative analysis. The results showed that the acute salinity stress for 15 days caused varying degrees of damage to the gut tissue structure of S. constricta, as observed by the cell vacuolation, tissue necrosis and villi clutter. A total of 712 bacterial OTUs were identified across all groups, among which the number of shared OTUs accounted for 6.2% of total OTUs. The dominant bacteria in the gut of S. constricta under low- and high- salinity stress belonged to γ-Proteobacteria and α-Proteobacteria, respectively. Acute salinity stress altered the α-diversity of gut bacterial community, with the lowest species richness under low salinity stress. The gut bacterial community structure of S. constricta changed significantly (p < 0.002) under both low- and high- salinity stress, accompanied by a decrease in the interspecific interactions of gut bacterial community. The ecological processes governing gut bacterial assembly of S. constricta was mainly deterministic under three salinity stresses, and this process decreased under the low salinity stress. Functional prediction results showed that acute salinity stress significantly varied the abundance of S. constricta gut bacterial-mediated nutrient and energy metabolism-related functional pathways, whereas the abundance of immune-related functional pathways significantly increased under high salinity stress. These findings suggest that acute salinity stress can cause pathological damage to the gut of S. constricta, accompanied by obvious change in gut bacterial communities and functional potentials, which could affect the health of S. constricta.
  • loading
  • [1]
    王劭雯. 皱纹盘鲍幼鲍对海水盐度的耐受性分析[D]. 青岛: 中国科学院海洋研究所, 2012.

    Wang Shaowen. Analysis of the toleration to different salinities in Haliotis discus hannai Ino[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2012.
    [2]
    Carregosa V, Figueira E, Gil A M, et al. Tolerance of Venerupis philippinarum to salinity: osmotic and metabolic aspects[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2014, 171: 36−43.
    [3]
    蔡星媛, 张秀梅, 田璐, 等. 盐度胁迫对魁蚶稚贝血淋巴渗透压及鳃Na+/K+-ATP酶活力的影响[J]. 南方水产科学, 2015, 11(2): 12−19.

    Cai Xingyuan, Zhang Xiumei, Tian Lu, et al. Effect of salinity stress on hemolymph osmolality and gill Na+/K+-ATPase activity of juvenile ark shell ( Anadara broughtonii)[J]. South China Fisheries Science, 2015, 11(2): 12−19.
    [4]
    范超, 温子川, 霍忠明, 等. 盐度胁迫对不同发育时期菲律宾蛤仔生长和存活的影响[J]. 大连海洋大学学报, 2016, 31(5): 497−504.

    Fan Chao, Wen Zichuan, Huo Zhongming, et al. Influence of salinity stress on growth and survival of Manila clam Ruditapes philippinarum at various developmental stages[J]. Journal of Dalian Ocean University, 2016, 31(5): 497−504.
    [5]
    杨东敏, 张艳丽, 丁鉴锋, 等. 高温、低盐对菲律宾蛤仔免疫能力的影响[J]. 大连海洋大学学报, 2017, 32(3): 302−309.

    Yang Dongmin, Zhang Yanli, Ding Jianfeng, et al. Synergistic effects of high temperature and low salinity on immunity of Manila clam Ruditapes philippinarum[J]. Journal of Dalian Ocean University, 2017, 32(3): 302−309.
    [6]
    包锬, 刘一萌, 来琦芳, 等. 盐度胁迫对河蚬摄食率及鳃ATP酶活力变化研究[J]. 海洋渔业, 2021, 43(6): 671−679. doi: 10.3969/j.issn.1004-2490.2021.06.004

    Bao Tan, Liu Yimeng, Lai Qifang, et al. Response of Corbicula fluminea's ingestion rate and branchial ATPase activity to salinity stress[J]. Marine Fisheries, 2021, 43(6): 671−679. doi: 10.3969/j.issn.1004-2490.2021.06.004
    [7]
    王怡, 胡婉彬, 李家祥, 等. 急性盐度胁迫对紫石房蛤( Saxidomus purpurata)鳃组织结构及4种酶活性的影响[J]. 中国农业科技导报, 2016, 18(5): 178−186.

    Wang Yi, Hu Wanbin, Li Jiaxiang, et al. Effects of acute salinity stress on gill structure and four enzyme activities in Saxidomus purpurata[J]. Journal of Agricultural Science and Technology, 2016, 18(5): 178−186.
    [8]
    Sun Fulin, Wang Chunzhong, Chen Xuelian. Bacterial community in Sinonovacula constricta intestine and its relationship with culture environment[J]. Applied Microbiology and Biotechnology, 2022, 106(13/16): 5211−5220.
    [9]
    Abid A, Davies S J, Waines P, et al. Dietary synbiotic application modulates Atlantic salmon ( Salmo salar) intestinal microbial communities and intestinal immunity[J]. Fish & Shellfish Immunology, 2013, 35(6): 1948−1956.
    [10]
    Cahenzli J, Köller Y, Wyss M, et al. Intestinal microbial diversity during early-life colonization shapes long-term IgE levels[J]. Cell Host & Microbe, 2013, 14(5): 559−570.
    [11]
    Khan I, Huang Zubin, Liang Liangyue, et al. Ammonia stress influences intestinal histomorphology, immune status and microbiota of Chinese striped-neck turtle ( Mauremys sinensis)[J]. Ecotoxicology and Environmental Safety, 2021, 222: 112471. doi: 10.1016/j.ecoenv.2021.112471
    [12]
    张家松, 段亚飞, 张真真, 等. 对虾肠道微生物菌群的研究进展[J]. 南方水产科学, 2015, 11(6): 114−119. doi: 10.3969/j.issn.2095-0780.2015.06.016

    Zhang Jiasong, Duan Yafei, Zhang Zhenzhen, et al. Research progress of intestinal microbial flora in shrimp[J]. South China Fisheries Science, 2015, 11(6): 114−119. doi: 10.3969/j.issn.2095-0780.2015.06.016
    [13]
    Eddy S D, Jones S H. Microbiology of summer flounder Paralichthys dentatus fingerling production at a marine fish hatchery[J]. Aquaculture, 2002, 211(1/4): 9−28.
    [14]
    Liu Jiajia, Wang Kai, Wang Yanting, et al. Strain-specific changes in the gut microbiota profiles of the white shrimp Litopenaeus vannamei in response to cold stress[J]. Aquaculture, 2019, 503: 357−366. doi: 10.1016/j.aquaculture.2019.01.026
    [15]
    田璐. 盐度对黄姑鱼生存生长、非特异性免疫及肠道菌群的影响[D]. 舟山: 浙江海洋大学, 2019.

    Tian Lu. Effects of salinity on growth, nonspecific immunity and micro-organism of Nibea albiflora[D]. Zhoushan: Zhejiang Ocean University, 2019.
    [16]
    Duan Yafei, Wang Yun, Liu Qingsong, et al. Changes in the intestine barrier function of Litopenaeus vannamei in response to pH stress[J]. Fish & Shellfish Immunology, 2019, 88: 142−149.
    [17]
    Zhang Tianxu, Zhang Yan, Xu Jiayun, et al. Toxic effects of ammonia on the intestine of the Asian clam ( Corbicula fluminea)[J]. Environmental Pollution, 2021, 287: 117617. doi: 10.1016/j.envpol.2021.117617
    [18]
    Dai Wenfang, Dong Yinghui, Ye Jing, et al. Gut microbiome composition likely affects the growth of razor clam Sinonovacula constricta[J]. Aquaculture, 2022, 550: 737847. doi: 10.1016/j.aquaculture.2021.737847
    [19]
    Pimentel Z T, Dufault-Thompson K, Russo K T, et al. Microbiome analysis reveals diversity and function of Mollicutes associated with the Eastern oyster, Crassostrea virginica[J]. mSphere, 2021, 6(3): e00227−21.
    [20]
    Li Yifeng, Yang Na, Liang Xiao, et al. Elevated seawater temperatures decrease microbial diversity in the gut of Mytilus coruscus[J]. Frontiers in Physiology, 2018, 9: 839. doi: 10.3389/fphys.2018.00839
    [21]
    Li Yifeng, Xu Jiakang, Chen Yanwen, et al. Characterization of gut microbiome in the mussel Mytilus galloprovincialis in response to thermal stress[J]. Frontiers in Physiology, 2019, 10: 1086. doi: 10.3389/fphys.2019.01086
    [22]
    林志华, 何琳, 董迎辉. 浙江滩涂贝类种业科技创新发展及展望[J]. 水产学报, 2023, 47(1): 019608.

    Lin Zhihua, He Lin, Dong Yinghui. Development and prospect for scientific and technological innovation of mudflat mollusk breeding industry in Zhejiang[J]. Journal of Fisheries of China, 2023, 47(1): 019608.
    [23]
    Cao Wei, Bi Siqi, Chi Changfeng, et al. Effects of high salinity stress on the survival, gill tissue, enzyme activity and free amino acid content in razor clam Sinonovacula constricta[J]. Frontiers in Marine Science, 2022, 9: 839614. doi: 10.3389/fmars.2022.839614
    [24]
    丁红兵, 李浩宇, 陈义华, 等. 高盐对缢蛏生长存活、Na+/K+-ATPase活性及能量代谢相关指标的影响[J]. 上海海洋大学学报, 2022, 31(4): 831−838.

    Ding Hongbing, Li Haoyu, Chen Yihua, et al. Effects of high salinity on growth and survival, Na+/K+-ATPase activity and energy metabolism related indexes of razor clam Sinonovacula constricta[J]. Journal of Shanghai Ocean University, 2022, 31(4): 831−838.
    [25]
    吕昊泽, 刘健, 陈锦辉, 等. 盐度对长江口3种滤食性贝类滤水率、摄食率、同化率的影响[J]. 海洋科学, 2016, 40(8): 10−17.

    Lü Haoze, Liu Jian, Chen Jinhui, et al. Effects of salinity on filtration, ingestion, and assimilation rates of three filter-feeding bivalves in the Yangtze River Estuary[J]. Marine Sciences, 2016, 40(8): 10−17.
    [26]
    Peng Maoxiao, Liu Xiaojun, Niu Donghong, et al. Survival, growth and physiology of marine bivalve ( Sinonovacula constricta) in long-term low-salt culture[J]. Scientific Reports, 2019, 9(1): 2819. doi: 10.1038/s41598-019-39205-2
    [27]
    李智, 彭茂潇, 叶博, 等. 急性低盐度对缢蛏存活率、Na+/K+-ATPase活性以及血淋巴细胞吞噬能力的影响[J]. 上海海洋大学学报, 2020, 29(4): 489−495.

    Li Zhi, Peng Maoxiao, Ye Bo, et al. Effects of acute low salinity on Sinonovacula constricta survival rate, Na+/K+-ATPase activity and phagocytosis of hemocytes[J]. Journal of Shanghai Ocean University, 2020, 29(4): 489−495.
    [28]
    Wei Yongjun, Ren Tianqi, Zhang Lei. Dix-seq: an integrated pipeline for fast amplicon data analysis[J/OL]. BioRxiv, 2020. doi: 10.1101/2020.05.11.089748
    [29]
    Magoč T, Salzberg S L. FLASH: fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21): 2957−2963. doi: 10.1093/bioinformatics/btr507
    [30]
    Edgar R C. Search and clustering orders of magnitude faster than BLAST[J]. Bioinformatics, 2010, 26(19): 2460−2461. doi: 10.1093/bioinformatics/btq461
    [31]
    Caporaso J G, Bittinger K, Bushman F D, et al. PyNAST: a flexible tool for aligning sequences to a template alignment[J]. Bioinformatics, 2010, 26(2): 266−267. doi: 10.1093/bioinformatics/btp636
    [32]
    Stegen J C, Lin Xueju, Fredrickson J K, et al. Quantifying community assembly processes and identifying features that impose them[J]. The ISME Journal, 2013, 7(11): 2069−2079. doi: 10.1038/ismej.2013.93
    [33]
    Deng Ye, Jiang Y H, Yang Yunfeng, et al. Molecular ecological network analyses[J]. BMC Bioinformatics, 2012, 13(1): 113. doi: 10.1186/1471-2105-13-113
    [34]
    Wang Shidong, Li Xue, Zhang Muzi, et al. Ammonia stress disrupts intestinal microbial community and amino acid metabolism of juvenile yellow catfish ( Pelteobagrus fulvidraco)[J]. Ecotoxicology and Environmental Safety, 2021, 227: 112932. doi: 10.1016/j.ecoenv.2021.112932
    [35]
    Klase G, Lee S, Liang Song, et al. The microbiome and antibiotic resistance in integrated fishfarm water: implications of environmental public health[J]. Science of the Total Environment, 2019, 649: 1491−1501. doi: 10.1016/j.scitotenv.2018.08.288
    [36]
    王元, 周俊芳, 韦信贤, 等. 海水和淡水养殖凡纳滨对虾肠道和鳃的菌群结构分析[J]. 湖南农业大学学报(自然科学版), 2018, 44(2): 198−203.

    Wang Yuan, Zhou Junfang, Wei Xinxian, et al. Microbial community structure analysis of intestine and gill of Litopenaeus vannamei in seawater and freshwater[J]. Journal of Hunan Agricultural University (Natural Sciences), 2018, 44(2): 198−203.
    [37]
    Karimi E, Keller-Costa T, Slaby B M, et al. Genomic blueprints of sponge-prokaryote symbiosis are shared by low abundant and cultivatable Alphaproteobacteria[J]. Scientific Reports, 2019, 9(1): 1999. doi: 10.1038/s41598-019-38737-x
    [38]
    邹建威. 岩扇贝内脏团和肠道可培养微生物及其宏基因多样性分析[D]. 大连: 大连海洋大学, 2019.

    Zou Jianwei. Diversity analysis of culturable microorganisms and their macrogenes in rock scallop viscera and intestine[D]. Dalian: Dalian Ocean University, 2019.
    [39]
    King G M, Judd C, Kuske C R, et al. Analysis of stomach and gut microbiomes of the eastern oyster ( Crassostrea virginica) from coastal Louisiana, USA[J]. PLoS One, 2012, 7(12): e51475. doi: 10.1371/journal.pone.0051475
    [40]
    Gao Fangzhou, Liao Shaoan, Liu Shanshan, et al. The combination use of Candida tropicalis HH8 and Pseudomonas stutzeri LZX301 on nitrogen removal, biofloc formation and microbial communities in aquaculture[J]. Aquaculture, 2019, 500: 50−56. doi: 10.1016/j.aquaculture.2018.09.041
    [41]
    符振强, 董扬帆, 汤上上, 等. 低盐胁迫下饲料中添加α-硫辛酸对凡纳滨对虾生长、抗氧化能力及肠道健康的影响[J]. 动物营养学报, 2021, 33(9): 5203−5218. doi: 10.3969/j.issn.1006-267x.2021.09.040

    Fu Zhenqiang, Dong Yangfan, Tang Shangshang, et al. Effects of dietary α-lipoic acid on growth, antioxidant capacity and intestinal health of Litopenaeus vannamei under low salinity stress[J]. Chinese Journal of Animal Nutrition, 2021, 33(9): 5203−5218. doi: 10.3969/j.issn.1006-267x.2021.09.040
    [42]
    Hou Dongwei, Zhou Renjun, Zeng Shenzheng, et al. Intestine bacterial community composition of shrimp varies under low- and high-salinity culture conditions[J]. Frontiers in Microbiology, 2020, 11: 589164. doi: 10.3389/fmicb.2020.589164
    [43]
    Krell T, Lacal J, Busch A, et al. Bacterial sensor kinases: diversity in the recognition of environmental signals[J]. Annual Review of Microbiology, 2010, 64(1): 539−559. doi: 10.1146/annurev.micro.112408.134054
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article views (332) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return