Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 45 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
Cai Ruixi,Zhang Yufan,Zhang Tao, et al. Study of indicators and methods for identifying typhoon deposits in the muddy belt of inner shelf of the East China Sea[J]. Haiyang Xuebao,2023, 45(9):58–71 doi: 10.12284/hyxb2023145
Citation: Cai Ruixi,Zhang Yufan,Zhang Tao, et al. Study of indicators and methods for identifying typhoon deposits in the muddy belt of inner shelf of the East China Sea[J]. Haiyang Xuebao,2023, 45(9):58–71 doi: 10.12284/hyxb2023145

Study of indicators and methods for identifying typhoon deposits in the muddy belt of inner shelf of the East China Sea

doi: 10.12284/hyxb2023145
  • Received Date: 2022-11-25
  • Rev Recd Date: 2023-04-06
  • Available Online: 2023-08-08
  • Publish Date: 2023-09-30
  • Typhoons are one of the major global environmental disasters, and their variability is of great concern to modern society. However, the variability of typhoon activity and its climate drivers on centennial-millennial scales are less clear due to the lack of atmospheric instrumental records before the mid-19th century. Coastal sedimentary archives provide a means to extend our knowledge of typhoon dynamics, of which the effective identification of typhoon event layers is an important foundation. Although many studies have attempted to reconstruct typhoon activity on long time scales using various indicators and methods, there is still a lack of evaluation of the effectiveness of these indicators and methods for the identification of typhoon event layer. In this study, a high-resolution sedimentary record (Core ZM02) from the muddy belt of inner shelf of the East China Sea was used, and its dating framework was determined using 210Pb and 137Cs dating methods. The instrumental and sedimentary records were then coupled to analyze the correspondence between typhoon intensity and frequency and sensitivity indicators of typhoon deposits (i.e., sand content and D90 in this study). The results show that the upper 4.5−100 cm of the core dates between 1917 and 2011 AD at a sedimentation rate of 0.97 cm/a. Among the three technical solutions, the threshold method was found to have the best identification and highest stability. Both sand content and D90 were found to be effective indicators for the identification of typhoon deposits in the study area. Sand content may be a potential indicator of typhoon intensity variation along the Zhejiang coast, and D90 contains information on typhoon frequency. The knowledge obtained here will not only contribute to the more accurate use of the sedimentary record to extend the time span of the typhoon record, but also to improve the ability to decipher information from the sedimentary record.
  • loading
  • [1]
    Peduzzi P, Chatenoux B, Dao H, et al. Global trends in tropical cyclone risk[J]. Nature Climate Change, 2012, 2(4): 289−294. doi: 10.1038/nclimate1410
    [2]
    Brown S, Nicholls R J, Hanson S, et al. Shifting perspectives on coastal impacts and adaptation[J]. Nature Climate Change, 2014, 4(9): 752−755. doi: 10.1038/nclimate2344
    [3]
    Emanuel K. Increasing destructiveness of tropical cyclones over the past 30 years[J]. Nature, 2005, 436(7051): 686−688. doi: 10.1038/nature03906
    [4]
    Bhatia K T, Vecchi G A, Knutson T R, et al. Recent increases in tropical cyclone intensification rates[J]. Nature Communications, 2019, 10(1): 635. doi: 10.1038/s41467-019-08471-z
    [5]
    Webster P J, Holland G J, Curry J A, et al. Changes in tropical cyclone number, duration, and intensity in a warming environment[J]. Science, 2005, 309(5742): 1844−1846. doi: 10.1126/science.1116448
    [6]
    Mei Wei, Xie Shangping, Primeau F, et al. Northwestern Pacific typhoon intensity controlled by changes in ocean temperatures[J]. Science Advances, 2015, 1(4): e1500014. doi: 10.1126/sciadv.1500014
    [7]
    Landsea C W, Harper B A, Hoarau K, et al. Can we detect trends in extreme tropical cyclones?[J]. Science, 2006, 313(5786): 452−454. doi: 10.1126/science.1128448
    [8]
    Knutson T, Camargo S J, Chan J C L, et al. Tropical cyclones and climate change assessment: Part I: detection and attribution[J]. Bulletin of the American Meteorological Society, 2019, 100(10): 1987−2007. doi: 10.1175/BAMS-D-18-0189.1
    [9]
    Sobel A H, Camargo S J, Hall T M, et al. Human influence on tropical cyclone intensity[J]. Science, 2016, 353(6296): 242−246. doi: 10.1126/science.aaf6574
    [10]
    Chan J C L. Comment on “Changes in tropical cyclone number, duration, and intensity in a warming environment”[J]. Science, 2006, 311(5768): 1713.
    [11]
    Zhao Jiuwei, Zhan Ruifen, Wang Yuqing, et al. Untangling impacts of global warming and Interdecadal Pacific Oscillation on long-term variability of North Pacific tropical cyclone track density[J]. Science Advances, 2020, 6(41): eaba6813. doi: 10.1126/sciadv.aba6813
    [12]
    Liu K B. Paleotempestology: principle, methods, and examples from Gulf Coast lake sediments[M]//Murnane R J, Liu K. Hurricanes and Typhoons: Past, Present, and Future. New York: Columbia University Press, 2004: 13−57.
    [13]
    Donnelly J P, Woodruff J D. Intense hurricane activity over the past 5, 000 years controlled by El Niño and the West African monsoon[J]. Nature, 2007, 447(7143): 465−468. doi: 10.1038/nature05834
    [14]
    廖淦标, 范代读. 全球变暖是否导致台风增强: 古风暴学研究进展与启示[J]. 科学通报, 2008, 53(19): 2907−2922.

    Liao Ganbiao Fan Daidu. Perspectives on the linkage between typhoon activity and global warming from recent research advances in paleotempestology[J]. Chinese Science Bulletin, 2008, 53(19): 2907−2922.
    [15]
    田翠翠, 余克服. 古风暴研究进展[J]. 海洋地质与第四纪地质, 2011, 31(4): 171−177.

    Tian Cuicui, Yu Kefu. Advances in the study of paleotempestology[J]. Marine Geology & Quaternary Geology, 2011, 31(4): 171−177.
    [16]
    高抒, 贾建军, 杨阳, 等. 陆架海岸台风沉积记录及信息提取[J]. 海洋学报, 2019, 41(10): 141−160.

    Gao Shu, Jia Jianjun, Yang Yang, et al. Obtaining typhoon information from sedimentary records in coastal-shelf waters[J]. Haiyang Xuebao, 2019, 41(10): 141−160.
    [17]
    Yang Yang, Piper D J W, Normandeau A, et al. A late Holocene shift of typhoon activity recorded by coastal sedimentary archives in eastern China[J]. Sedimentology, 2022, 69(2): 954−969. doi: 10.1111/sed.12934
    [18]
    Støren E N, Dahl S O, Nesje A, et al. Identifying the sedimentary imprint of high-frequency Holocene river floods in lake sediments: development and application of a new method[J]. Quaternary Science Reviews, 2010, 29(23/24): 3021−3033.
    [19]
    杨照祥, 薛成凤, 杨阳, 等. 百年尺度东海内陆架风暴事件重建: 器测记录与沉积记录耦合[J]. 海洋学报, 2020, 42(7): 119−129.

    Yang Zhaoxiang, Xue Chengfeng, Yang Yang, et al. A 100-year reconstruction of typhoon events on the inner shelf of the East China Sea: coupling of meteorological observations and sedimentary records[J]. Haiyang Xuebao, 2020, 42(7): 119−129.
    [20]
    Lane P, Donnelly J P, Woodruff J D, et al. A decadally-resolved paleohurricane record archived in the late Holocene sediments of a Florida sinkhole[J]. Marine Geology, 2011, 287(1/4): 14−30.
    [21]
    Zhou Xin, Liu Zhonghui, Yan Qing, et al. Enhanced tropical cyclone intensity in the western North Pacific during warm periods over the last two millennia[J]. Geophysical Research Letters, 2019, 46(15): 9145−9153. doi: 10.1029/2019GL083504
    [22]
    Tian Yuan, Fan Dejiang, Zhang Xilin, et al. Event deposits of intense typhoons in the muddy wedge of the East China Sea over the past 150 years[J]. Marine Geology, 2019, 410: 109−121. doi: 10.1016/j.margeo.2018.12.010
    [23]
    Gao Shu, Wang Dandan, Yang Yang, et al. Holocene sedimentary systems on a broad continental shelf with abundant river input: process-product relationships[J]. Geological Society, London, Special Publications, 2016, 429(1): 223−259. doi: 10.1144/SP429.4
    [24]
    汪亚平, 贾建军, 杨阳, 等. 长江三角洲蓝图重绘的基础科学问题: 进展与未来研究[J]. 海洋科学, 2019, 10(10): 1−12.

    Wang Yaping, Jia Jianjun, Yang Yang, et al. Fundamental scientific issues for the Changjiang River Delta associated with the new blueprint of future development: overview and prospect[J]. Marine Sciences, 2019, 10(10): 1−12.
    [25]
    Gao Jianhua, Shi Yong, Sheng Hui, et al. Rapid response of the Changjiang (Yangtze) River and East China Sea source-to-sink conveying system to human induced catchment perturbations[J]. Marine Geology, 2019, 414: 1−17. doi: 10.1016/j.margeo.2019.05.003
    [26]
    Liu Xiting, Li Anchun, Dong Jiang, et al. Provenance discrimination of sediments in the Zhejiang-Fujian mud belt, East China Sea: implications for the development of the mud depocenter[J]. Journal of Asian Earth Sciences, 2018, 151: 1−15. doi: 10.1016/j.jseaes.2017.10.017
    [27]
    王翠, 郭晓峰, 方婧, 等. 闽浙沿岸流扩展范围的季节特征及其对典型海湾的影响[J]. 应用海洋学学报, 2018, 37(1): 1−8. doi: 10.3969/J.ISSN.2095-4972.2018.01.001

    Wang Cui, Guo Xiaofeng, Fang Jing, et al. Characteristics of seasonal spatial expansion of Fujian and Zhejiang Coastal Current and their bay effects[J]. Journal of Applied Oceanography, 2018, 37(1): 1−8. doi: 10.3969/J.ISSN.2095-4972.2018.01.001
    [28]
    Yang Yang, Xu Min, Jia Jianjun, et al. Human-induced asynchronous sedimentary records between the north and south of the Changjiang distal mud belt since 2005 CE[J]. Estuarine, Coastal and Shelf Science, 2021, 262: 107578. doi: 10.1016/j.ecss.2021.107578
    [29]
    Ying Ming, Zhang Wei, Yu Hui, et al. An overview of the China Meteorological Administration tropical cyclone database[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(2): 287−301. doi: 10.1175/JTECH-D-12-00119.1
    [30]
    Lu Xiaoqin, Yu Hui, Ying Ming, et al. Western North Pacific tropical cyclone database created by the China Meteorological Administration[J]. Advances in Atmospheric Sciences, 2021, 38(4): 690−699. doi: 10.1007/s00376-020-0211-7
    [31]
    Xu Chaoran, Yang Yang, Zhang Fan, et al. Spatial-temporal distribution of tropical cyclone activity on the eastern sea area of China since the late 1940s[J]. Estuarine, Coastal and Shelf Science, 2022, 277: 108067. doi: 10.1016/j.ecss.2022.108067
    [32]
    吴兰军, 黎刚. XRF岩心扫描估算海洋沉积物有机碳含量的适用性[J]. 热带海洋学报, 2022, 41(2): 112−120.

    Wu Lanjun, Li Gang. The estimation of organic contents in marine sediments based on bromine intensity by the XRF scanner[J]. Journal of Tropical Oceanography, 2022, 41(2): 112−120.
    [33]
    成艾颖, 余俊清, 张丽莎, 等. XRF岩芯扫描分析方法及其在湖泊沉积研究中的应用[J]. 盐湖研究, 2010, 18(2): 7−13.

    Cheng Aiying, Yu Junqing, Zhang Lisha, et al. XRF core scanning and applications on lake sediments[J]. Journal of Salt Lake Research, 2010, 18(2): 7−13.
    [34]
    Hennekam R, de Lange G. X-ray fluorescence core scanning of wet marine sediments: methods to improve quality and reproducibility of high-resolution paleoenvironmental records[J]. Limnology and Oceanography: Methods, 2012, 10(12): 991−1003. doi: 10.4319/lom.2012.10.991
    [35]
    McManus J. Grain size determination and interpretation[M]//Tucker M. Techniques, in Sedimentology. Oxford: Blackwell, 1988: 63−85.
    [36]
    Appleby P G, Oldfieldz F. The assessment of 210Pb data from sites with varying sediment accumulation rates[J]. Hydrobiologia, 1983, 103(1): 29−35. doi: 10.1007/BF00028424
    [37]
    曾理, 吴丰昌, 万国江, 等. 中国地区湖泊沉积物中137Cs分布特征和环境意义[J]. 湖泊科学, 2009, 21(1): 1−9. doi: 10.3321/j.issn:1003-5427.2009.01.001

    Zeng Li, Wu Fengchang, Wan Guojiang, et al. The distribution characteristic and environmental significance of Cesium-137 deposit profile in Chinese lacustrine sediment[J]. Journal of Lake Sciences, 2009, 21(1): 1−9. doi: 10.3321/j.issn:1003-5427.2009.01.001
    [38]
    万国江. 现代沉积年分辨的137Cs计年──以云南洱海和贵州红枫湖为例[J]. 第四纪研究, 1999(1): 73−80.

    Wan Guojiang. 137Cs dating by annual distinguish for recent sedimentation: samples from Erhai Lake and Hongfeng Lake[J]. Quaternary Sciences, 1999(1): 73−80.
    [39]
    夏威岚, 薛滨. 吉林小龙湾沉积速率的210Pb和137Cs年代学方法测定[J]. 第四纪研究, 2004, 24(1): 124−125.

    Xia Weilan, Xue Bin. The 210Pb and 137Cs chronological meansurement on sedimentation rate of Xiaolongwan, Jiling[J]. Quaternary Sciences, 2004, 24(1): 124−125.
    [40]
    Yang Yang, Piper D J W, Xu Min, et al. Northwestern Pacific tropical cyclone activity enhanced by increased Asian dust emissions during the Little Ice Age[J]. Nature Communications, 2022, 13(1): 1712. doi: 10.1038/s41467-022-29386-2
    [41]
    Yang Yang, Zhou Liang, Normandeau A, et al. Exploring records of typhoon variability in eastern China over the past 2 000 years[J]. GSA Bulletin, 2020, 132(11/12): 2243−2252.
    [42]
    Ercolani C, Muller J, Collins J, et al. Intense Southwest Florida hurricane landfalls over the past 1 000 years[J]. Quaternary Science Reviews, 2015, 126: 17−25. doi: 10.1016/j.quascirev.2015.08.008
    [43]
    Wallace E J, Donnelly J P, van Hengstum P J, et al. 1, 050 years of hurricane strikes on Long Island in the Bahamas[J]. Paleoceanography and Paleoclimatology, 2021, 36(3): e2020PA004156.
    [44]
    刘升发, 石学法, 刘焱光, 等. 东海内陆架泥质区沉积速率[J]. 海洋地质与第四纪地质, 2009, 29(6): 1−7.

    Liu Shengfa, Shi Xuefa, Liu Yanguang, et al. Sedimentation rate of mud area in the East China Sea inner continental shelf[J]. Marine Geology & Quaternary Geology, 2009, 29(6): 1−7.
    [45]
    Scheffler K, Buehmann D, Schwark L. Analysis of late Palaeozoic glacial to postglacial sedimentary successions in South Africa by geochemical proxies—Response to climate evolution and sedimentary environment[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 240(1/2): 184−203.
    [46]
    赵一阳, 喻德科. 黄海沉积物地球化学分析[J]. 海洋与湖沼, 1983(5): 432−446.

    Zhao Yiyang, Yu Deke. Geochemical analysis of the sediments of the Huanghai Sea[J]. Oceanologia et Limnologia Sinica, 1983(5): 432−446.
    [47]
    高文华. 南黄海内陆架沉积物扩散过程的示踪方法[D]. 南京: 南京大学, 2015.

    Gao Wenhua. Sediment dispersal processes on the southern Yellow Sea continental shelf: tracer methods[D]. Nanjing: Nanjing University, 2015.
    [48]
    韩瑞. 浑善达克沙地全新世气候变化研究[D]. 太原: 山西大学, 2020.

    Han Rui. Climate change in Otindag sandy land during the Holocene[D]. Taiyuan: Shanxi University, 2020.
    [49]
    Karageorgis A P, Kaberi H, Price N B, et al. Chemical composition of short sediment cores from Thermaikos Gulf (Eastern Mediterranean): sediment accumulation rates, trawling and winnowing effects[J]. Continental Shelf Research, 2005, 25(19/20): 2456−2475.
    [50]
    Mei Wei, Xie Shangping. Intensification of landfalling typhoons over the Northwest Pacific since the late 1970s[J]. Nature Geoscience, 2016, 9(10): 753−757. doi: 10.1038/ngeo2792
    [51]
    石蓉蓉, 雷媛, 王东法, 等. 1949−2007年影响浙江热带气旋灾情分析及评估研究[J]. 科技通报, 2008, 24(5): 612−616. doi: 10.3969/j.issn.1001-7119.2008.05.005

    Shi Rongrong, Lei Yuan, Wang Dongfa, et al. Analysis and assessment of TC disaster influencing Zhejiang Province from 1949 to 2007[J]. Bulletin of Science and Technology, 2008, 24(5): 612−616. doi: 10.3969/j.issn.1001-7119.2008.05.005
    [52]
    朱业, 丁骏, 卢美, 等. 1949−2009年登陆和影响浙江的热带气旋分析[J]. 海洋预报, 2012, 29(2): 8−13. doi: 10.11737/j.issn.1003-0239.2012.02.002

    Zhu Ye, Ding Jun, Lu Mei, et al. Analysis of the tropical cyclones landing in Zhejiang Province during 1949−2009[J]. Marine Forecasts, 2012, 29(2): 8−13. doi: 10.11737/j.issn.1003-0239.2012.02.002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article views (259) PDF downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return