Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 45 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
Liang Chao,Liu Li,Liu Jianqiang, et al. A study on the extraction of Red Beach Suaeda salsa and its change trends in recent 5 years based on HY-1C data[J]. Haiyang Xuebao,2023, 45(11):164–174 doi: 10.12284/hyxb2023144
Citation: Liang Chao,Liu Li,Liu Jianqiang, et al. A study on the extraction of Red Beach Suaeda salsa and its change trends in recent 5 years based on HY-1C data[J]. Haiyang Xuebao,2023, 45(11):164–174 doi: 10.12284/hyxb2023144

A study on the extraction of Red Beach Suaeda salsa and its change trends in recent 5 years based on HY-1C data

doi: 10.12284/hyxb2023144
  • Received Date: 2023-04-14
  • Rev Recd Date: 2023-07-05
  • Available Online: 2023-10-23
  • Publish Date: 2023-11-30
  • In order to master the current distribution and the restoration status of Suaeda salsa in the Red Beach, a remote sensing extraction model was constructed based on the HY-1C satellite CZI data and on-site measured spectral. Five periods of spatial distribution data of S. salsa were obtained in 2018−2022, with the extraction accuracy better than 87%; based on the extracted results, a change analysis on the spatio-temporal distribution and the class-level landscape pattern of S. salsa was conducted. The results show that: in the past 5 years, the overall distribution area of the S. salsa community has shown a significant increase trend, with indicators such as class area (CA), percentage of landscape (PLAND), largest patch index (LPI), effective mesh size (MESH), and mean patch size (AREA_MN) showing a first decreasing and then increasing trend, splitting index (SPLIT) first increasing and then decreasing, and aggregation index (AI) overall showing an upward trend. It can be seen that the proportion of S. salsa community in the landscape composition of Red Beach has been increasing year by year, the complexity of landscape shape has increased, the fragmentation trend has been reversed, and the trend of aggregation distribution is more obvious. This all indicates that the large-scale restoration project of S. salsa implemented since 2019 has achieved a significant result. The biotope of the Red Beach S. salsa continues to improve, but at the same time, it shows a spatial imbalance of the recovery level, which is generally better in the middle and east than in the west, and better in the south than in the north. The results of this paper can provide basic data for the evaluation of the effectiveness of the restoration project, and provide decision-making reference for the spatial planning in the future restoration work.
  • loading
  • [1]
    康艳华. 盘锦海岸带翅碱蓬种群退化原因的调查与分析[J]. 辽宁农业职业技术学院学报, 2004, 6(3): 27−28, 38.

    Kang Yanhua. The investigation analysis of why Suaeda heteroptera kitag population becoming vestigial in Panjin Coast[J]. Journal of Liaoning Agricultural Vocation-Technical College, 2004, 6(3): 27−28, 38.
    [2]
    台培东, 苏丹, 刘延斌, 等. 双台子河口国家自然保护区红海滩景观退化机制研究[J]. 环境污染与防治, 2009, 31(1): 17−20. doi: 10.3969/j.issn.1001-3865.2009.01.006

    Tai Peidong, Su Dan, Liu Yanbin, et al. Degeneration mechanism research of the Red Beach landscape of the Shuangtaizi Estuary National Nature Reserve in China[J]. Environmental Pollution & Control, 2009, 31(1): 17−20. doi: 10.3969/j.issn.1001-3865.2009.01.006
    [3]
    Zhang Minghua, Ustin S L, Rejmankova E, et al. Monitoring Pacific coast salt marshes using remote sensing[J]. Ecological Applications, 1997, 7(3): 1039−1053. doi: 10.1890/1051-0761(1997)007[1039:MPCSMU]2.0.CO;2
    [4]
    Pham D T, Xia Junshi, Ha N T, et al. A review of remote sensing approaches for monitoring blue carbon ecosystems: mangroves, Seagrasses and salt marshes during 2010−2018[J]. Sensors, 2019, 19(8): 1933. doi: 10.3390/s19081933
    [5]
    Li Huixuan, Wang Cuizhen, Cui Yuxin, et al. Mapping salt marsh along coastal South Carolina using U-Net[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 179: 121−132. doi: 10.1016/j.isprsjprs.2021.07.011
    [6]
    Hu Yuekai, Tian Bo, Yuan Lin, et al. Mapping coastal salt marshes in China using time series of Sentinel-1 SAR[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 173: 122−134. doi: 10.1016/j.isprsjprs.2021.01.003
    [7]
    Sun Chao, Li Jianlin, Liu Yongxue, et al. Plant species classification in salt marshes using phenological parameters derived from Sentinel-2 pixel-differential time-series[J]. Remote Sensing of Environment, 2021, 256: 112320. doi: 10.1016/j.rse.2021.112320
    [8]
    Chen Guangwei, Jin Runjie, Ye Zhanjiang, et al. Spatiotemporal mapping of salt marshes in the intertidal zone of China during 1985−2019[J]. Journal of Remote Sensing, 2022, 2022: 9793626.
    [9]
    Li Miao, Chen Bin, Webster C, et al. The land-sea interface mapping: China’s coastal land covers at 10 m for 2020[J]. Science Bulletin, 2022, 67(17): 1750−1754.
    [10]
    Gu Jiali, Jin Runjie, Chen Guangwei, et al. Areal extent, species composition, and spatial distribution of coastal saltmarshes in China[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 7085−7094. doi: 10.1109/JSTARS.2021.3093673
    [11]
    陈官滨, 刘伟男, 贾越平, 等. 2013~2016年辽河口碱蓬湿地时空动态变化分析[J]. 现代盐化工, 2018, 45(1): 64−65. doi: 10.3969/j.issn.1005-880X.2018.01.027

    Chen Guanbin, Liu Weinan, Jia Yueping, et al. Analysis on the spatial and temporal changes of Suaeda salsa’ biomass in Liaohe Estuary during 2013 to 2016[J]. Modern Salt and Chemical Industry, 2018, 45(1): 64−65. doi: 10.3969/j.issn.1005-880X.2018.01.027
    [12]
    吴涛, 赵冬至, 康建成, 等. 辽东湾双台子河口湿地翅碱蓬( Suaeda salsa)生物量遥感反演研究[J]. 生态环境学报, 2011, 20(1): 24−29. doi: 10.3969/j.issn.1674-5906.2011.01.005

    Wu Tao, Zhao Dongzhi, Kang Jiancheng, et al. Suaeda salsa dynamic remote monitoring and biomass remote sensing inversion in Shuangtaizi River Estuary[J]. Ecology and Environmental Sciences, 2011, 20(1): 24−29. doi: 10.3969/j.issn.1674-5906.2011.01.005
    [13]
    牟蒙. 基于高光谱遥感的翅碱蓬生物量反演模型研究[D]. 大连: 大连海洋大学, 2016.

    Mu Meng. Inversion model study of Suaeda salsa biomass based on hyperspectral remote sensing[D]. Dalian: Dalian Ocean University, 2016.
    [14]
    陈官滨. 辽河滨海湿地翅碱蓬群落年碳储量遥感评估[D]. 大连: 大连海洋大学, 2018.

    Chen Guanbin. Remote sensing assessment of carbon storage by coastal wetlands in Liaohe Estuary[D]. Dalian: Dalian Ocean University, 2018.
    [15]
    李晋, 乔会婷, 徐天平, 等. 辽河口红海滩湿地海域潮流及盐度的数值模拟[J]. 大连海洋大学学报, 2018, 33(5): 625−632. doi: 10.16535/j.cnki.dlhyxb.2018.05.013

    Li Jin, Qiao Huiting, Xu Tianping, et al. Numerical simulation of tidal flow and salinity in Pink Beach wetlands of Liao River Estuary, China[J]. Journal of Dalian Ocean University, 2018, 33(5): 625−632. doi: 10.16535/j.cnki.dlhyxb.2018.05.013
    [16]
    李微, 王文硕, 张新宇, 等. 基于HY-1C CZI数据的辽河口湿地盐地碱蓬群落碳储量评估[J]. 大连海洋大学学报, 2022, 37(4): 574−583.

    Li Wei, Wang Wenshuo, Zhang Xinyu, et al. Carbon storage assessment of sea grass Suaeda salsa community in Liaohe Estuary wetland based on HY-1C CZI data[J]. Journal of Dalian Ocean University, 2022, 37(4): 574−583.
    [17]
    孙圳. 辽河口湿地翅碱蓬植被年际变化及其影响因素的相关性研究[D]. 大连: 大连海洋大学, 2018.

    Sun Zhen. Interannual change of Suaeda heteroptera in the wetland of Liaohe Estuary and correlation study of its influencing factors[D]. Dalian: Dalian Ocean University, 2018.
    [18]
    苏岫, 李悦铭, 景昕蒂, 等. 基于GF-6的翅碱蓬生长密度遥感定量反演[J]. 海洋环境科学, 2023, 42(1): 151−159.

    Su Xiu, Li Yueming, Jing Xindi, et al. Quantitative remote sensing inversion of Suaeda salsa growth density based on GF-6[J]. Marine Environmental Science, 2023, 42(1): 151−159.
    [19]
    赵英伟. 辽河口东岸翅碱蓬湿地时空演变分析及分区研究[D]. 沈阳: 沈阳农业大学, 2020.

    Zhao Yingwei. Spatiotemporal evolution and regionalization of Suaeda salsa wetland degradation in Liaohe Estuary[D]. Shenyang: Shenyang Agricultural University, 2020.
    [20]
    钱凤魁, 李婉宁, 赵英伟, 等. 辽河口东岸翅碱蓬湿地退化分区及其土壤影响因素分析[J]. 沈阳农业大学学报, 2021, 52(5): 611−617.

    Qian Fengkui, Li Wanning, Zhao Yingwei, et al. Analysis on degradation areas of Suaeda salsa wetland and soil properties in Liaohe Estuary[J]. Journal of Shenyang Agricultural University, 2021, 52(5): 611−617.
    [21]
    温广玥. 1997−2018年辽河口翅碱蓬生物群落时空变化特征研究[D]. 北京: 中国地质大学(北京), 2020.

    Wen Guangyue. The temporal and spatial variation of Suaeda salsa in Liaohe Estuary from 1997 to 2018[D]. Beijing: China University of Geosciences (Beijing), 2020.
    [22]
    李建国, 杨德明, 胡克, 等. 盘锦市红海滩碱蓬空间特征研究[J]. 吉林大学学报(地球科学版), 2006, 36(S1): 108−112. doi: 10.13278/j.cnki.jjuese.2006.s1.024

    Li Jianguo, Yang Deming, Hu Ke, et al. Study on hetroptera kitag spatial characteristics in Honghai Beach of Panjin City[J]. Journal of Jilin University (Earth Science Edition), 2006, 36(S1): 108−112. doi: 10.13278/j.cnki.jjuese.2006.s1.024
    [23]
    周林飞, 李成明, 王英敏. 辽河三角洲湿地景观破碎化分析[J]. 辽宁工程技术大学学报(自然科学版), 2013, 32(1): 97−101.

    Zhou Linfei, Li Chengming, Wang Yingmin. Landscape fragmentation analysis of Liaohe River Delta wetland[J]. Journal of Liaoning Technical University (Natural Science), 2013, 32(1): 97−101.
    [24]
    吴英超. 双台子河口滨海湿地景观格局动态变化分析[D]. 大连: 大连海事大学, 2011.

    Wu Yingchao. The study on dynamic change of coastal wetland landscape patterns at Shuangtaizi River[D]. Dalian: Dalian Maritime University, 2011.
    [25]
    郝向磊, 邓磊, 贺英. 盘锦湿地翅碱蓬景观变化的遥感监测与分析[J]. 湿地科学与管理, 2017, 13(4): 31−36. doi: 10.3969/j.issn.1673-3290.2017.04.08

    Hao Xianglei, Deng Lei, He Ying. An analysis of dynamic monitoring and landscape pattern change of Suaeda salsa wetlands in Panjin using remote sensing technology[J]. Wetland Science & Management, 2017, 13(4): 31−36. doi: 10.3969/j.issn.1673-3290.2017.04.08
    [26]
    刘婷, 刘兴土, 杜嘉, 等. 五个时期辽河三角洲滨海湿地格局及变化研究[J]. 湿地科学, 2017, 15(4): 622−628. doi: 10.13248/j.cnki.wetlandsci.2017.04.022

    Liu Ting, Liu Xingtu, Du Jia, et al. Pattern and change of coastal wetlands in the Liaohe River Delta for 5 periods[J]. Wetland Science, 2017, 15(4): 622−628. doi: 10.13248/j.cnki.wetlandsci.2017.04.022
    [27]
    王旖旎, 康亚茹, 陈旭, 等. 辽河口潮滩湿地景观格局空间演变的动态分析[J]. 大连海洋大学学报, 2021, 36(6): 1009−1017.

    Wang Yini, Kang Yaru, Chen Xu, et al. Dynamic analysis of spatial evolution of landscape pattern in the tidal flat wetlands at Liao River Estuary[J]. Journal of Dalian Ocean University, 2021, 36(6): 1009−1017.
    [28]
    陈旭, 詹泽荣, 弓耘, 等. 辽河口潮滩典型盐沼植被退化影响因素分析[J]. 人民黄河, 2022, 44(7): 81−85. doi: 10.3969/j.issn.1000-1379.2022.07.015

    Chen Xu, Zhan Zerong, Gong Yun, et al. Analysis of Influence factors of typical salt vegetation degradation in tidal wetland of Liaohe River Estuary[J]. Yellow River, 2022, 44(7): 81−85. doi: 10.3969/j.issn.1000-1379.2022.07.015
    [29]
    孟泰舟. 辽河入海口两岸翅碱蓬分布变化情况及退化影响因素分析[J]. 现代农业科技, 2020(11): 216−217. doi: 10.3969/j.issn.1007-5739.2020.11.131

    Meng Taizhou. Analysis of the distribution changes and degradation influencing factors of Suaeda heteroptera on both sides of the Liaohe River Estuary[J]. Modern Agricultural Science and Technology, 2020(11): 216−217. doi: 10.3969/j.issn.1007-5739.2020.11.131
    [30]
    梁超, 刘利, 刘建强, 等. 基于HY-1C CZI影像光谱指数重构数据MNF变换的红树林提取[J]. 海洋学报, 2020, 42(4): 104−112.

    Liang Chao, Liu Li, Liu Jianqiang, et al. Extracting mangrove information using MNF transformation based on HY-1C CZI spectral indices reconstruction data[J]. Haiyang Xuebao, 2020, 42(4): 104−112.
    [31]
    邹亚荣, 刘建强, 梁超, 等. 基于HY-1C卫星CZI数据的红树林长势遥感监测[J]. 海洋学研究, 2020, 38(1): 68−76. doi: 10.3969/j.issn.1001-909X.2020.01.008

    Zou Yarong, Liu Jianqiang, Liang Chao, et al. Monitoring of mangrove growth using HY-1C Satellite CZI data based on remote sensing[J]. Journal of Marine Sciences, 2020, 38(1): 68−76. doi: 10.3969/j.issn.1001-909X.2020.01.008
    [32]
    韩秀珍, 吴朝阳, 郑伟, 等. 基于水面实测光谱的太湖蓝藻卫星遥感研究[J]. 应用气象学报, 2010, 21(6): 724−731.

    Han Xiuzhen, Wu Chaoyang, Zheng Wei, et al. Satellite remote sensing of cyanophyte using observed spectral measurements over the Taihu Lake[J]. Journal of Applied Meteorological Science, 2010, 21(6): 724−731.
    [33]
    岩学斌, 袁金海. 盐胁迫对植物生长的影响[J]. 安徽农业科学, 2019, 47(4): 30−33.

    Yan Xuebin, Yuan Jinhai. Effects of salt stress on plant growth[J]. Journal of Anhui Agricultural Sciences, 2019, 47(4): 30−33.
    [34]
    韩海华, 梁名志, 王丽, 等. 花青素的研究进展及其应用[J]. 茶叶, 2011, 37(4): 217−220. doi: 10.3969/j.issn.0577-8921.2011.04.006

    Han Haihua, Liang Mingzhi, Wang Li, et al. Research progress of anthocyanin[J]. Journal of Tea, 2011, 37(4): 217−220. doi: 10.3969/j.issn.0577-8921.2011.04.006
    [35]
    张正龙. 我国黄、东海浒苔和马尾藻的遥感鉴别及绿潮发生过程研究[D]. 上海: 华东师范大学, 2014.

    Zhang Zhenglong. Remote sensing identification of Ulva prolifra and Sargassum and evolution of green tide in the Yellow Sea and the East China Sea[D]. Shanghai: East China Normal University, 2014.
    [36]
    O’Neill R V, Krummel J R, Gardner R H, et al. Indices of landscape pattern[J]. Landscape Ecology, 1988, 1(3): 153−162. doi: 10.1007/BF00162741
    [37]
    He H S, DeZonia B E, Mladenoff D J. An aggregation index (AI) to quantify spatial patterns of landscapes[J]. Landscape Ecology, 2000, 15(7): 591−601. doi: 10.1023/A:1008102521322
    [38]
    Jaeger J A G. Landscape division, splitting index, and effective mesh size: new measures of landscape fragmentation[J]. Landscape Ecology, 2000, 15(2): 115−130. doi: 10.1023/A:1008129329289
    [39]
    邬建国. 景观生态学——格局、过程、尺度与等级[M]. 2版. 北京: 高等教育出版社, 2007.

    Wu Jianguo. Landscape Ecology: Pattern, Process, Scale and Hierarchy[M]. 2nd ed. Beijing: Higher Education Press, 2007.
    [40]
    Wu Jianguo, Shen Weijun, Sun Weizhong, et al. Empirical patterns of the effects of changing scale on landscape metrics[J]. Landscape Ecology, 2002, 17(8): 761−782. doi: 10.1023/A:1022995922992
    [41]
    杨鹏, 高祺, 张艳品, 等. 基于Fragstats4的景观格局指数与地表温度的相关性——以石家庄市为例[J]. 气象科技, 2021, 49(3): 464−474. doi: 10.19517/j.1671-6345.20200207

    Yang Peng, Gao Qi, Zhang Yanpin, et al. A Fragstats4-based case study of correlation between landscape pattern index and surface temperature in Shijiazhuang[J]. Meteorological Science and Technology, 2021, 49(3): 464−474. doi: 10.19517/j.1671-6345.20200207
    [42]
    高范, 乌立国, 贾世娜, 等. 辽河口翅碱蓬降滩修复效果评估及其影响机制研究[J]. 环境生态学, 2022, 4(6): 49−53.

    GAO Fan, WU Liguo, JIA Shina, et al. Study on evaluation and impact mechanism of beach lowering restoration effect of Suaeda Heteroptera wetland in Liaohe Estuary[J]. Environmental Ecology, 2022, 4(6): 49−53.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(4)

    Article views (345) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return