Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 45 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
Li Ke,Ren Yizhuo,Han Xuekai, et al. Reproductive regulation of fruitless gene in brine shrimp Artemia franciscana[J]. Haiyang Xuebao,2023, 45(10):114–122 doi: 10.12284/hyxb2023139
Citation: Li Ke,Ren Yizhuo,Han Xuekai, et al. Reproductive regulation of fruitless gene in brine shrimp Artemia franciscana[J]. Haiyang Xuebao,2023, 45(10):114–122 doi: 10.12284/hyxb2023139

Reproductive regulation of fruitless gene in brine shrimp Artemia franciscana

doi: 10.12284/hyxb2023139
  • Received Date: 2023-04-09
  • Rev Recd Date: 2023-06-15
  • Available Online: 2023-12-27
  • Publish Date: 2023-10-30
  • fruitless (fru) gene plays an important role in courtship, mating behavior and reproductive development of insectsand crustaceans. Artemia is not only the crucial live food in fish and crustacean larviculture, but also an ideal experimental organism for biological study. In this experiment, the open reading frame (ORF) of fru gene was obtained from the transcriptome of Artemia franciscana and analyzed bioinformatically. qPCR was used to study the expression characteristics of this gene at different stages of gonad development in the Artemia, and its function was explored by RNAi microinjection. Bioinformatics analysis showed that the ORF length of fru gene was 1 215 bp, which contains 404 amino acids, while its molecular weight and isoelectric point were 45.19 kDa and 5.28, and it was an acidic hydrophilic protein with no signal peptide or transmembrane structure; structural domain prediction showed that there are two structural domains of fru, BTB_POZ and HTH. The secondary structure is dominated by α-helix and irregular coil, and the tertiary structure corresponds to it. The qPCR results showed that the expression of fru gene showed a significant increase in late embryos stage, and its expression was significantly higher than that of early oocyte, later oocyte and early embryo stages in the ovary (P < 0.01); while the expression of fru gene also increased in immature stage of the testis, and its expression was significantly higher than that of early, middle and late maturation stages (P < 0.01). After RNA interference, we found that there was a significant decrease in the expression of the fru gene (P < 0.01), and all the offspring produced were cysts. This suggests that the fru gene has an important effect on reproduction and development of A. franciscana, and may be a key factor influencing the reproductive mode of Artemia. Through this study, we obtained important information about the role of fru gene in the reproductive development of Artemia and their related molecular mechanisms, which can help us better understand this important biological process.
  • loading
  • [1]
    Clynen E, Ciudad L, Bellés X, et al. Conservation of fruitless’ role as master regulator of male courtship behaviour from cockroaches to flies[J]. Development Genes and Evolution, 2011, 221(1): 43−48. doi: 10.1007/s00427-011-0352-x
    [2]
    Ito H, Fujitani K, Usui K, et al. Sexual orientation in Drosophila is altered by the satori mutation in the sex-determination gene fruitless that encodes a zinc finger protein with a BTB domain[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(18): 9687−9692.
    [3]
    Ryner L C, Goodwin S F, Castrillon D H, et al. Control of male sexual behavior and sexual orientation in Drosophila by the fruitless gene[J]. Cell, 1996, 87(6): 1079−1089. doi: 10.1016/S0092-8674(00)81802-4
    [4]
    Tanaka R, Higuchi T, Kohatsu S, et al. Optogenetic activation of the fruitless-labeled circuitry in Drosophila subobscura males induces mating motor acts[J]. Journal of Neuroscience, 2017, 37(48): 11662−11674. doi: 10.1523/JNEUROSCI.1943-17.2017
    [5]
    Wu Shunfan, Guo Chao, Zhao Huan, et al. Drosulfakinin signaling in fruitless circuitry antagonizes P1 neurons to regulate sexual arousal in Drosophila[J]. Nature Communications, 2019, 10(1): 4770. doi: 10.1038/s41467-019-12758-6
    [6]
    Peng Qionglin, Chen Jie, Pan Yufeng. From fruitless to sex: on the generation and diversification of an innate behavior[J]. Genes, Brain and Behavior, 2021, 20(8): e12772. doi: 10.1111/gbb.12772
    [7]
    陈瑶瑶, 古枫, 钟国华, 等. Fruitless在桔小实蝇求偶和交配行为中的作用[J]. 昆虫学报, 2020, 63(8): 924−931. doi: 10.16380/j.kcxb.2020.08.002

    Chen Yaoyao, Gu Feng, Zhong Guohua, et al. Role of fruitless in courtship and mating behaviors in Bactrocera dorsalis (Diptera Tephritidae)[J]. ActaEntomologicaSinica, 2020, 63(8): 924−931. doi: 10.16380/j.kcxb.2020.08.002
    [8]
    郑人文. Fruitless在家蚕求偶行为中的功能研究[D]. 重庆: 西南大学, 2016.

    Zheng Renwen. Functional characterization of fruitless in courtship behavior in silkworm[D]. Chongqing: Southwest University, 2016.
    [9]
    Boerjan B, Tobback J, De Loof A, et al. Fruitless RNAi knockdown in males interferes with copulation success in Schistocerca gregaria[J]. Insect Biochemistry and Molecular Biology, 2011, 41(5): 340−347. doi: 10.1016/j.ibmb.2011.01.012
    [10]
    Glenner H, Thomsen P F, Hebsgaard M B, et al. The origin of insects[J]. Science, 2006, 314(5807): 1883−1884. doi: 10.1126/science.1129844
    [11]
    Budd G E, Telford M J. The origin and evolution of arthropods[J]. Nature, 2009, 457(7231): 812−817. doi: 10.1038/nature07890
    [12]
    邱必巡. 拟穴青蟹fruitless基因鉴定及在性腺发育中的表达与调控研究[D]. 汕头: 汕头大学, 2021.

    Qiu Bixun. Cloning, expression and regulation of fruitless gene in gonadal development of mud crab (Scylla paramamosain)[D]. Shantou: Shantou University, 2021.
    [13]
    Li Peiyao, Liu Yuan, Luo Danli, et al. Two spliced isoforms of the sex-determination gene fruitless in the Chinese mitten crab Eriocheir sinensis[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2017, 208−209: 75−83. doi: 10.1016/j.cbpb.2017.04.008
    [14]
    Lin Dawei, GuoYongjun, Chen Xiuli, et al. Identification and expression pattern of the sex determination gene fruitless-like in Cherax quadricarinatus[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2022, 259: 110704. doi: 10.1016/j.cbpb.2021.110704
    [15]
    Triantaphyllidis G, Abatzopoulos T, Sorgeloos P. Review of the biogeography of the genus Artemia (Crustacea, Anostraca)[J]. Journal of Biogeography, 1998, 25(2): 213−226. doi: 10.1046/j.1365-2699.1998.252190.x
    [16]
    Lopes-dos-Santos R M A, Groot R, Sui Liying, et al. Halophilic bacteria as a food source for the brine shrimp Artemia[J]. Aquaculture, 2019, 500: 631−639. doi: 10.1016/j.aquaculture.2018.10.068
    [17]
    Sánchez M I, Green A J, Castellanos E M. Temporal and spatial variation of an aquatic invertebrate community subjected to avian predation at the Odiel salt pans (SW Spain)[J]. Archiv für Hydrobiologie, 2006, 166(2): 199−223.
    [18]
    Sorgeloos P, Dhert P, Candreva P. Use of the brine shrimp, Artemia spp. , in marine fish larviculture[J]. Aquaculture, 2001, 200(1/2): 147−159.
    [19]
    Han Xuekai, Ren Yizhuo, Ouyang Xuemei, et al. Construction of a high-density genetic linkage map and QTL mapping for sex and growth traits in Artemia franciscana[J]. Aquaculture, 2021, 540: 736692. doi: 10.1016/j.aquaculture.2021.736692
    [20]
    De Vos S, Bossier P, Van Stappen G, et al. A first AFLP-based genetic linkage map for brine shrimp Artemia franciscana and its application in mapping the sex locus[J]. PLoS One, 2013, 8(3): e57585. doi: 10.1371/journal.pone.0057585
    [21]
    Li Dongrui, Ye Huili, Yang Jinshu, et al. Identification and characterization of a Masculinizer ( Masc) gene involved in sex differentiation in Artemia[J]. Gene, 2017, 614: 56−64. doi: 10.1016/j.gene.2017.03.010
    [22]
    King A M, MacRae T H. The small heat shock protein p26 aids development of encysting Artemia embryos, prevents spontaneous diapause termination and protects against stress[J]. PLoS One, 2012, 7(8): e43723. doi: 10.1371/journal.pone.0043723
    [23]
    任翊卓, 韩学凯, 左佳俊, 等. Piwi基因参与两性卤虫( Artemia franciscana)的生殖调控研究[J]. 海洋与湖沼, 2021, 52(6): 1567−1576.

    Ren Yizhuo, HanXuekai, ZuoJiajun, et al. Thereproductive regulation of piwi in bisexual Artemia franciscana[J]. Oceanologia et Limnologia Sinica, 2021, 52(6): 1567−1576.
    [24]
    孙瑜霞. 卤虫休眠胚胎形成过程中相关基因分子克隆及功能研究[D]. 杭州: 浙江大学, 2014.

    Sun Yuxia. Identification and characterization of genes in Artemia and the roles in the diapause embryo formation[D]. Hangzhou: Zhejiang University, 2014.
    [25]
    王志伟. 对虾VEGF信号通路在WSSV感染过程中的功能研究[D]. 北京: 中国科学院大学(中国科学院海洋研究所), 2017.

    Wang Zhiwei. Studies on the functions of VEGF signaling pathway in shrimp during WSSV infection[D]. Beijing: Institute of Oceanology, Chinese Academy of Sciences, 2017.
    [26]
    Davis T, Kurihara J, Yoshino E, et al. Genomic organisation of the neural sexdetermination gene fruitless ( fuu) in the Hawaiian species Drosophila siluestris and the conservation of the Fru BTB protein-protein-binding domain throughout evolution[J]. Hereditas, 2000, 132(1): 67−78.
    [27]
    Bertossa R C, van de Zande L, Beukeboom L W. The fruitless gene in Nasonia displays complex sex-specific splicing and contains new zinc finger domains[J]. Molecular Biology and Evolution, 2009, 26(7): 1557−1569. doi: 10.1093/molbev/msp067
    [28]
    Liu Yulei, Zhao Yang, Dai Zhongmin, et al. Formation of diapause cyst shell in brine shrimp, Artemia parthenogenetica, and its resistance role in environmental stresses[J]. Journal of Biological Chemistry, 2009, 284(25): 16931−16938. doi: 10.1074/jbc.M109.004051
    [29]
    Dai Zhongmin, Li Ran, Dai Li, et al. Determination in oocytes of the reproductive modes for the brine shrimp Artemia parthenogenetica[J]. Bioscience Reports, 2011, 31(1): 17−30. doi: 10.1042/BSR20090141
    [30]
    Copf T, Schröder R, Averof M. Ancestral role of caudal genes in axis elongation and segmentation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(51): 17711−17715.
    [31]
    Chen Dianfu, Lin Cheng, Wang Hongliang, et al. An La-related protein controls cell cycle arrest by nuclear retrograde transport of tRNAs during diapause formation in Artemia[J]. BMC Biology, 2016, 14(1): 16. doi: 10.1186/s12915-016-0239-4
    [32]
    Boerjan B, Tobback J, Vandersmissen H P, et al. Fruitless RNAi knockdown in the desert locust, Schistocerca gregaria, influences male fertility[J]. Journal of Insect Physiology, 2012, 58(2): 265−269. doi: 10.1016/j.jinsphys.2011.11.017
    [33]
    Demir E, Dickson B J. fruitless splicing specifies male courtship behavior in Drosophila[J]. Cell, 2005, 121(5): 785−794. doi: 10.1016/j.cell.2005.04.027
    [34]
    Ito H, Sato K, Kondo S, et al. Fruitless represses robo1 transcription to shape male-specific neural morphology and behavior in Drosophila[J]. Current Biology, 2016, 26(12): 1532−1542. doi: 10.1016/j.cub.2016.04.067
    [35]
    Tapia C, Parra L, Pacheco B, et al. Courtship behavior and potential indications for chemical communication in Artemia franciscana (Kellog 1906)[J]. Gayana, 2015, 79(2): 152−160.
    [36]
    Zhao Songhui, Deanhardt B, Barlow G T, et al. Chromatin-based reprogramming of a courtship regulator by concurrent pheromone perception and hormone signaling[J]. Science Advances, 2020, 6(21): eaba6913. doi: 10.1126/sciadv.aba6913
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article views (119) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return