Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 45 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
Chen Xu,Kong Xiangxue,Zhou Runsheng, et al. A method for solving along-track vertical deflection based on SWOT wide-swath simulated data[J]. Haiyang Xuebao,2023, 45(11):175–184 doi: 10.12284/hyxb2023138
Citation: Chen Xu,Kong Xiangxue,Zhou Runsheng, et al. A method for solving along-track vertical deflection based on SWOT wide-swath simulated data[J]. Haiyang Xuebao,2023, 45(11):175–184 doi: 10.12284/hyxb2023138

A method for solving along-track vertical deflection based on SWOT wide-swath simulated data

doi: 10.12284/hyxb2023138
  • Received Date: 2023-03-14
  • Rev Recd Date: 2023-06-28
  • Available Online: 2023-10-20
  • Publish Date: 2023-11-30
  • The SWOT was successfully launched on December 16, 2022, which is a new generation of wide-swath altimetry satellite. The SWOT is expected to provide two-dimensional strip hight informations of global sea area and inland water surface. It is expected to solve the problem of traditional one-dimensional observations, which is inconsistent accuracy in solving the directional component of the vertical deflection. In this paper, we adopted SWOT simulated data to solve along-track vertical deflection by jointing multi-directions, and proposed two upgrading schemes according to the characteristics of the simulated data: one is to increase the distance of joint observations appropriately, and the other is to assign weights according to the quality of SWOT strip data separately. The vertical deflection of the SWOT simulated data solved is checked with EGM2008 model, the standard deviation of the north component and east component are 0.416 8, 0.472 9 arcsec respectively. The solution quality is better than other schemes, it proves the feasibility of improved schemes. The method is also validated using Tiangong II wide-swath data. So it can be applied to SWOT real data to solve the vertical deflection.
  • loading
  • [1]
    陈欣, 翟国君, 暴景阳, 等. 垂线偏差反演重力异常中央区效应计算模型[J]. 海洋测绘, 2016, 36(2): 6−9. doi: 10.3969/j.issn.1671-3044.2016.02.002

    Chen Xin, Zhai Guojun, Bao Jingyang, et al. Gravity anomaly inversion using deflection of the vertical based on singular transformation in rectangle innermost areas[J]. Hydrographic Surveying and Charting, 2016, 36(2): 6−9. doi: 10.3969/j.issn.1671-3044.2016.02.002
    [2]
    彭富清, 陈双军, 金群峰. 卫星测高误差对海洋重力场反演的影响[J]. 测绘学报, 2014, 43(4): 337−340. doi: 10.13485/j.cnki.11-2089.2014.0050

    Peng Fuqing, Chen Shuangjun, Jin Qunfeng. Influence of altimetry errors on marine geopotential recovery[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(4): 337−340. doi: 10.13485/j.cnki.11-2089.2014.0050
    [3]
    张胜军, 李建成, 褚永海, 等. 基于Cryosat和Jason1 GM数据的垂线偏差计算与分析[J]. 武汉大学学报:信息科学版, 2015, 40(8): 1012−1017.

    Zhang Shengjun, Li Jiancheng, Chu Yonghai, et al. Calculation and analysis of the deflection of vertical derived from Cryosat and Jason1 GM data[J]. Geomatics and Information Science of Wuhan University, 2015, 40(8): 1012−1017.
    [4]
    郭金运, 金鑫, 边少锋, 等. 垂线偏差测量的固体潮和海潮改正[J]. 测绘学报, 2022, 51(7): 1215−1224. doi: 10.11947/j.issn.1001-1595.2022.7.chxb202207013

    Guo Jinyun, Jin Xin, Bian Shaofeng, et al. Corrections of solid earth tide and ocean tide for measurement of deflection of the vertical[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1215−1224. doi: 10.11947/j.issn.1001-1595.2022.7.chxb202207013
    [5]
    翟振和, 孙中苗, 肖云, 等. 自主海洋测高卫星串飞模式的设计与重力场反演精度分析[J]. 武汉大学学报:信息科学版, 2018, 43(7): 1030−1035, 1128. doi: 10.13203/j.whugis20160234

    Zhai Zhenhe, Sun Zhongmiao, Xiao Yun, et al. Two-satellites tandem mode design and accuracy analysis of gravity field inversion for independent marine altimetry satellite[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1030−1035, 1128. doi: 10.13203/j.whugis20160234
    [6]
    王虎彪, 王勇, 柴华, 等. 中国西太平洋海域1′ × 1′垂线偏差模型及精度评估[J]. 测绘学报, 2017, 46(9): 1073−1079.

    Wang Hubiao, Wang Yong, Chai Hua, et al. 1′ × 1′ vertical deflection and its precision evaluation on China West Pacific Ocean region[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(9): 1073−1079.
    [7]
    Andersen O B, Knudsen P, Berry P A M. The DNSC08GRA global marine gravity field from double retracked satellite altimetry[J]. Journal of Geodesy, 2010, 84(3): 191−199. doi: 10.1007/s00190-009-0355-9
    [8]
    Fu L L, Ubelmann C. On the transition from profile altimeter to swath altimeter for observing global ocean surface topography[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(2): 560−568. doi: 10.1175/JTECH-D-13-00109.1
    [9]
    Sandwell D T, Harper H, Tozer B, et al. Gravity field recovery from geodetic altimeter missions[J]. Advances in Space Research, 2021, 68(2): 1059−1072. doi: 10.1016/j.asr.2019.09.011
    [10]
    车德福, 李航, 张胜军, 等. 同步激光测高数据的垂线偏差解算与分析[J]. 测绘科学, 2021, 46(11): 24−31. doi: 10.16251/j.cnki.1009-2307.2021.11.005

    Che Defu, Li Hang, Zhang Shengjun, et al. Calculation and analysis of vertical deflection of simultaneous laser altimetry data[J]. Science of Surveying and Mapping, 2021, 46(11): 24−31. doi: 10.16251/j.cnki.1009-2307.2021.11.005
    [11]
    徐永生, 高乐, 张云华. 美国新一代测高卫星SWOT——评述我国宽刈幅干涉卫星的发展借鉴[J]. 遥感技术与应用, 2017, 32(1): 84−94.

    Xu Yongsheng, Gao Le, Zhang Yunhua. New generation altimetry satellite SWOT and its reference to China’s swath altimetrysatellite[J]. Remote Sensing Technology and Application, 2017, 32(1): 84−94.
    [12]
    Morrow R, Fu L L, Rodriguez E. SWOT: a high-resolution wide-swath altimetry mission for oceanography and hydrology[C]//Proceedings of the EGU General Assembly 2013. Vienna, Austria: EGU, 2013: EGU2013-7382.
    [13]
    Morrow R, Fu L L, Ardhuin F, et al. Global observations of fine-scale ocean surface topography with the surface water and ocean topography (SWOT) mission[J]. Frontiers in Marine Science, 2019, 6: 232. doi: 10.3389/fmars.2019.00232
    [14]
    Yu Daocheng, Hwang C, Andersen O B, et al. Gravity recovery from SWOT altimetry using geoid height and geoid gradient[J]. Remote Sensing of Environment, 2021, 265: 112650. doi: 10.1016/j.rse.2021.112650
    [15]
    Chaudhary A, Agarwal N, Sharma R, et al. Nadir altimetry Vis-à-Vis swath altimetry: a study in the context of SWOT mission for the Bay of Bengal[J]. Remote Sensing of Environment, 2021, 252: 112120. doi: 10.1016/j.rse.2020.112120
    [16]
    Verron J, Bonnefond P, Aouf L, et al. The benefits of the ka-band as evidenced from the SARAL/AltiKa altimetric mission: scientific applications[J]. Remote Sensing, 2018, 10(2): 163. doi: 10.3390/rs10020163
    [17]
    Guerreiro K, Fleury S, Zakharova E, et al. Potential for estimation of snow depth on Arctic sea ice from CryoSat-2 and SARAL/AltiKa missions[J]. Remote Sensing of Environment, 2016, 186: 339−349. doi: 10.1016/j.rse.2016.07.013
    [18]
    D’Addezio J M, Smith S, Jacobs G A, et al. Quantifying wavelengths constrained by simulated SWOT observations in a submesoscale resolving ocean analysis/forecasting system[J]. Ocean Modelling, 2019, 135: 40−55. doi: 10.1016/j.ocemod.2019.02.001
    [19]
    Elmer N J, Hain C, Hossain F, et al. Generating proxy SWOT water surface elevations using WRF-hydro and the CNES SWOT hydrology simulator[J]. Water Resources Research, 2020, 56(8): e2020WR027464. doi: 10.1029/2020WR027464
    [20]
    de Moraes Frasson R P, Wei Rui, Durand M, et al. Automated river reach definition strategies: applications for the surface water and ocean topography mission[J]. Water Resources Research, 2017, 53(10): 8164−8186. doi: 10.1002/2017WR020887
    [21]
    Huang Qi, Long Di, Du Mingda, et al. Daily continuous river discharge estimation for ungauged basins using a hydrologic model calibrated by satellite altimetry: implications for the SWOT mission[J]. Water Resources Research, 2020, 56(7): e2020WR027309. doi: 10.1029/2020WR027309
    [22]
    Wang Jinbo, Fu L L, Qiu Bo, et al. An observing system simulation experiment for the calibration and validation of the surface water ocean topography sea surface height measurement using in situ platforms[J]. Journal of Atmospheric and Oceanic Technology, 2018, 35(2): 281−297. doi: 10.1175/JTECH-D-17-0076.1
    [23]
    Fu L L, Alsdorf D, Rodriguez E, et al. The SWOT (surface water and ocean topography) mission: spaceborne radar interferometry for oceanographic and hydrological applications[C]//Proceedings of the OCEANOBS’09 Conference. [S. l.: s.n.], 2009.
    [24]
    Wan Xiaoyun, Jin Shuanggen, Liu Bo, et al. Effects of interferometric radar altimeter errors on marine gravity field inversion[J]. Sensors, 2020, 20(9): 2465. doi: 10.3390/s20092465
    [25]
    Jin Taoyong, Zhou Mao, Zhang Huan, et al. Analysis of vertical deflections determined from one cycle of simulated SWOT wide-swath altimeter data[J]. Journal of Geodesy, 2022, 96(4): 30. doi: 10.1007/s00190-022-01619-8
    [26]
    Peral E, Esteban-Fernandez D. Swot mission performance and error budget[C]//Proceedings of 2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia, Spain: IEEE, 2018: 8625−8628.
    [27]
    Gaultier L, Ubelmann C, Fu L L. The challenge of using future SWOT data for oceanic field reconstruction[J]. Journal of Atmospheric and Oceanic Technology, 2016, 33(1): 119−126. doi: 10.1175/JTECH-D-15-0160.1
    [28]
    Pavlis N K, Holmes S A, Kenyon S C, et al. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008)[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B4): B04406.
    [29]
    Miao Xiangying, Wang Jing, Mao Peng, et al. Cross-track error correction and evaluation of the tiangong-2 interferometric imaging radar altimeter[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1505505.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(6)

    Article views (346) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return