Citation: | Chen Xu,Kong Xiangxue,Zhou Runsheng, et al. A method for solving along-track vertical deflection based on SWOT wide-swath simulated data[J]. Haiyang Xuebao,2023, 45(11):175–184 doi: 10.12284/hyxb2023138 |
[1] |
陈欣, 翟国君, 暴景阳, 等. 垂线偏差反演重力异常中央区效应计算模型[J]. 海洋测绘, 2016, 36(2): 6−9. doi: 10.3969/j.issn.1671-3044.2016.02.002
Chen Xin, Zhai Guojun, Bao Jingyang, et al. Gravity anomaly inversion using deflection of the vertical based on singular transformation in rectangle innermost areas[J]. Hydrographic Surveying and Charting, 2016, 36(2): 6−9. doi: 10.3969/j.issn.1671-3044.2016.02.002
|
[2] |
彭富清, 陈双军, 金群峰. 卫星测高误差对海洋重力场反演的影响[J]. 测绘学报, 2014, 43(4): 337−340. doi: 10.13485/j.cnki.11-2089.2014.0050
Peng Fuqing, Chen Shuangjun, Jin Qunfeng. Influence of altimetry errors on marine geopotential recovery[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(4): 337−340. doi: 10.13485/j.cnki.11-2089.2014.0050
|
[3] |
张胜军, 李建成, 褚永海, 等. 基于Cryosat和Jason1 GM数据的垂线偏差计算与分析[J]. 武汉大学学报:信息科学版, 2015, 40(8): 1012−1017.
Zhang Shengjun, Li Jiancheng, Chu Yonghai, et al. Calculation and analysis of the deflection of vertical derived from Cryosat and Jason1 GM data[J]. Geomatics and Information Science of Wuhan University, 2015, 40(8): 1012−1017.
|
[4] |
郭金运, 金鑫, 边少锋, 等. 垂线偏差测量的固体潮和海潮改正[J]. 测绘学报, 2022, 51(7): 1215−1224. doi: 10.11947/j.issn.1001-1595.2022.7.chxb202207013
Guo Jinyun, Jin Xin, Bian Shaofeng, et al. Corrections of solid earth tide and ocean tide for measurement of deflection of the vertical[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1215−1224. doi: 10.11947/j.issn.1001-1595.2022.7.chxb202207013
|
[5] |
翟振和, 孙中苗, 肖云, 等. 自主海洋测高卫星串飞模式的设计与重力场反演精度分析[J]. 武汉大学学报:信息科学版, 2018, 43(7): 1030−1035, 1128. doi: 10.13203/j.whugis20160234
Zhai Zhenhe, Sun Zhongmiao, Xiao Yun, et al. Two-satellites tandem mode design and accuracy analysis of gravity field inversion for independent marine altimetry satellite[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1030−1035, 1128. doi: 10.13203/j.whugis20160234
|
[6] |
王虎彪, 王勇, 柴华, 等. 中国西太平洋海域1′ × 1′垂线偏差模型及精度评估[J]. 测绘学报, 2017, 46(9): 1073−1079.
Wang Hubiao, Wang Yong, Chai Hua, et al. 1′ × 1′ vertical deflection and its precision evaluation on China West Pacific Ocean region[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(9): 1073−1079.
|
[7] |
Andersen O B, Knudsen P, Berry P A M. The DNSC08GRA global marine gravity field from double retracked satellite altimetry[J]. Journal of Geodesy, 2010, 84(3): 191−199. doi: 10.1007/s00190-009-0355-9
|
[8] |
Fu L L, Ubelmann C. On the transition from profile altimeter to swath altimeter for observing global ocean surface topography[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(2): 560−568. doi: 10.1175/JTECH-D-13-00109.1
|
[9] |
Sandwell D T, Harper H, Tozer B, et al. Gravity field recovery from geodetic altimeter missions[J]. Advances in Space Research, 2021, 68(2): 1059−1072. doi: 10.1016/j.asr.2019.09.011
|
[10] |
车德福, 李航, 张胜军, 等. 同步激光测高数据的垂线偏差解算与分析[J]. 测绘科学, 2021, 46(11): 24−31. doi: 10.16251/j.cnki.1009-2307.2021.11.005
Che Defu, Li Hang, Zhang Shengjun, et al. Calculation and analysis of vertical deflection of simultaneous laser altimetry data[J]. Science of Surveying and Mapping, 2021, 46(11): 24−31. doi: 10.16251/j.cnki.1009-2307.2021.11.005
|
[11] |
徐永生, 高乐, 张云华. 美国新一代测高卫星SWOT——评述我国宽刈幅干涉卫星的发展借鉴[J]. 遥感技术与应用, 2017, 32(1): 84−94.
Xu Yongsheng, Gao Le, Zhang Yunhua. New generation altimetry satellite SWOT and its reference to China’s swath altimetrysatellite[J]. Remote Sensing Technology and Application, 2017, 32(1): 84−94.
|
[12] |
Morrow R, Fu L L, Rodriguez E. SWOT: a high-resolution wide-swath altimetry mission for oceanography and hydrology[C]//Proceedings of the EGU General Assembly 2013. Vienna, Austria: EGU, 2013: EGU2013-7382.
|
[13] |
Morrow R, Fu L L, Ardhuin F, et al. Global observations of fine-scale ocean surface topography with the surface water and ocean topography (SWOT) mission[J]. Frontiers in Marine Science, 2019, 6: 232. doi: 10.3389/fmars.2019.00232
|
[14] |
Yu Daocheng, Hwang C, Andersen O B, et al. Gravity recovery from SWOT altimetry using geoid height and geoid gradient[J]. Remote Sensing of Environment, 2021, 265: 112650. doi: 10.1016/j.rse.2021.112650
|
[15] |
Chaudhary A, Agarwal N, Sharma R, et al. Nadir altimetry Vis-à-Vis swath altimetry: a study in the context of SWOT mission for the Bay of Bengal[J]. Remote Sensing of Environment, 2021, 252: 112120. doi: 10.1016/j.rse.2020.112120
|
[16] |
Verron J, Bonnefond P, Aouf L, et al. The benefits of the ka-band as evidenced from the SARAL/AltiKa altimetric mission: scientific applications[J]. Remote Sensing, 2018, 10(2): 163. doi: 10.3390/rs10020163
|
[17] |
Guerreiro K, Fleury S, Zakharova E, et al. Potential for estimation of snow depth on Arctic sea ice from CryoSat-2 and SARAL/AltiKa missions[J]. Remote Sensing of Environment, 2016, 186: 339−349. doi: 10.1016/j.rse.2016.07.013
|
[18] |
D’Addezio J M, Smith S, Jacobs G A, et al. Quantifying wavelengths constrained by simulated SWOT observations in a submesoscale resolving ocean analysis/forecasting system[J]. Ocean Modelling, 2019, 135: 40−55. doi: 10.1016/j.ocemod.2019.02.001
|
[19] |
Elmer N J, Hain C, Hossain F, et al. Generating proxy SWOT water surface elevations using WRF-hydro and the CNES SWOT hydrology simulator[J]. Water Resources Research, 2020, 56(8): e2020WR027464. doi: 10.1029/2020WR027464
|
[20] |
de Moraes Frasson R P, Wei Rui, Durand M, et al. Automated river reach definition strategies: applications for the surface water and ocean topography mission[J]. Water Resources Research, 2017, 53(10): 8164−8186. doi: 10.1002/2017WR020887
|
[21] |
Huang Qi, Long Di, Du Mingda, et al. Daily continuous river discharge estimation for ungauged basins using a hydrologic model calibrated by satellite altimetry: implications for the SWOT mission[J]. Water Resources Research, 2020, 56(7): e2020WR027309. doi: 10.1029/2020WR027309
|
[22] |
Wang Jinbo, Fu L L, Qiu Bo, et al. An observing system simulation experiment for the calibration and validation of the surface water ocean topography sea surface height measurement using in situ platforms[J]. Journal of Atmospheric and Oceanic Technology, 2018, 35(2): 281−297. doi: 10.1175/JTECH-D-17-0076.1
|
[23] |
Fu L L, Alsdorf D, Rodriguez E, et al. The SWOT (surface water and ocean topography) mission: spaceborne radar interferometry for oceanographic and hydrological applications[C]//Proceedings of the OCEANOBS’09 Conference. [S. l.: s.n.], 2009.
|
[24] |
Wan Xiaoyun, Jin Shuanggen, Liu Bo, et al. Effects of interferometric radar altimeter errors on marine gravity field inversion[J]. Sensors, 2020, 20(9): 2465. doi: 10.3390/s20092465
|
[25] |
Jin Taoyong, Zhou Mao, Zhang Huan, et al. Analysis of vertical deflections determined from one cycle of simulated SWOT wide-swath altimeter data[J]. Journal of Geodesy, 2022, 96(4): 30. doi: 10.1007/s00190-022-01619-8
|
[26] |
Peral E, Esteban-Fernandez D. Swot mission performance and error budget[C]//Proceedings of 2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia, Spain: IEEE, 2018: 8625−8628.
|
[27] |
Gaultier L, Ubelmann C, Fu L L. The challenge of using future SWOT data for oceanic field reconstruction[J]. Journal of Atmospheric and Oceanic Technology, 2016, 33(1): 119−126. doi: 10.1175/JTECH-D-15-0160.1
|
[28] |
Pavlis N K, Holmes S A, Kenyon S C, et al. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008)[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B4): B04406.
|
[29] |
Miao Xiangying, Wang Jing, Mao Peng, et al. Cross-track error correction and evaluation of the tiangong-2 interferometric imaging radar altimeter[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1505505.
|