Citation: | Ji Xue,Dong Zhen,Zhang Jingyu, et al. Identification and correction of airborne laser bathymetry intensity data in AGC compensated abnormal zone[J]. Haiyang Xuebao,2023, 45(10):159–167 doi: 10.12284/hyxb2023133 |
[1] |
Su Dianpeng, Yang Fanlin, Ma Yue, et al. Classification of coral reefs in the South China Sea by combining airborne LiDAR bathymetry bottom waveforms and bathymetric features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2): 815−828. doi: 10.1109/TGRS.2018.2860931
|
[2] |
Narayanan R, Kim H B, Sohn G. Classification of SHOALS 3000 bathymetric LiDAR signals using decision tree and ensemble techniques[C]//2009 IEEE Toronto International Conference Science and Technology for Humanity (TIC-STH). Toronto, ON, Canada: IEEE, 2009.
|
[3] |
刘焱雄, 郭锴, 何秀凤, 等. 机载激光测深技术及其研究进展[J]. 武汉大学学报(信息科学版), 2017, 42(9): 1185−1194.
Liu Yanxiong, Guo Kai, He Xiufeng, et al. Research progress of airborne laser bathymetry technology[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1185−1194.
|
[4] |
Ji Xue, Yang Bisheng, Tang Qiuhua, et al. A coarse-to-fine strip mosaicing model for airborne bathymetric LiDAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(10): 8129−8142. doi: 10.1109/TGRS.2021.3050789
|
[5] |
Ji Xue, Yang Bisheng, Wang Yuan, et al. Full-waveform classification and segmentation-based signal detection of single-wavelength bathymetric LiDAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4208714.
|
[6] |
Abdallah H, Baghdadi N, Bailly J S, et al. Wa-LiD: a new LiDAR simulator for waters[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(4): 744−748. doi: 10.1109/LGRS.2011.2180506
|
[7] |
Eren F, Pe’eri S, Rzhanov Y, et al. Bottom characterization by using airborne lidar bathymetry (ALB) waveform features obtained from bottom return residual analysis[J]. Remote Sensing of Environment, 2018, 206: 260−274. doi: 10.1016/j.rse.2017.12.035
|
[8] |
Zavalas R, Ierodiaconou D, Ryan D, et al. Habitat classification of temperate marine macroalgal communities using bathymetric LiDAR[J]. Remote Sensing, 2014, 6(3): 2154−2175. doi: 10.3390/rs6032154
|
[9] |
Long B F, Aucoin F, Montreuil S, et al. Airborne lidar bathymetry applied to coastal hydrodynamic processes[C]. Coastal Engineering Proceedings. 2011, 1(32): 1−12.
|
[10] |
Ji Xue, Yang Bisheng, Tang Qiuhua, et al. Feature fusion-based registration of satellite images to airborne LiDAR bathymetry in island area[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 109: 102778. doi: 10.1016/j.jag.2022.102778
|
[11] |
Höfle B, Pfeifer N. Correction of laser scanning intensity data: Data and model-driven approaches[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 62(6): 415−433. doi: 10.1016/j.isprsjprs.2007.05.008
|
[12] |
Oren M, Nayar S K. Generalization of the Lambertian model and implications for machine vision[J]. International Journal of Computer Vision, 1995, 14(3): 227−251. doi: 10.1007/BF01679684
|
[13] |
Yoon J S, Shin J I, Lee K S. Land cover characteristics of airborne LiDAR intensity data: a case study[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(4): 801−805. doi: 10.1109/LGRS.2008.2000754
|
[14] |
Richter K, Maas H G. Radiometric enhancement of full-waveform airborne laser scanner data for volumetric representation in environmental applications[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 183: 510−524. doi: 10.1016/j.isprsjprs.2021.10.021
|
[15] |
Kashani A G, Olsen M J, Parrish C E, et al. A review of LIDAR radiometric processing: from Ad Hoc intensity correction to rigorous radiometric calibration[J]. Sensors, 2015, 15(11): 28099−28128. doi: 10.3390/s151128099
|
[16] |
Lin Y C. Normalization of echo features derived from full-waveform airborne laser scanning data[J]. Remote Sensing, 2015, 7(3): 2731−2751. doi: 10.3390/rs70302731
|
[17] |
Peeri S, Gardner J V, Ward L G, et al. The seafloor: a key factor in Lidar bottom detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(3): 1150−1157. doi: 10.1109/TGRS.2010.2070875
|
[18] |
Wang C K, Philpot W D. Using airborne bathymetric Lidar to detect bottom type variation in shallow waters[J]. Remote Sensing of Environment, 2007, 106(1): 123−135. doi: 10.1016/j.rse.2006.08.003
|
[19] |
Philips D M, Abbot R H, Penny M F. Remote sensing of sea water turbidity with an airborne laser system[J]. Journal of Physics D: Applied Physics, 1984, 17(8): 1749. doi: 10.1088/0022-3727/17/8/028
|
[20] |
Vain A, Yu Xiaowei, Kaasalainen S, et al. Correcting airborne laser scanning intensity data for automatic gain control effect[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(3): 511−514. doi: 10.1109/LGRS.2010.2040578
|
[21] |
Korpela I, Ørka H O, Hyyppä J, et al. Range and AGC normalization in airborne discrete-return LiDAR intensity data for forest canopies[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2010, 65(4): 369−379. doi: 10.1016/j.isprsjprs.2010.04.003
|
[22] |
Korpela I S. Mapping of understory lichens with airborne discrete-return LiDAR data[J]. Remote Sensing of Environment, 2008, 112(10): 3891−3897. doi: 10.1016/j.rse.2008.06.007
|
[23] |
刘健, 陈亮, 王驹, 等. 二维K-S检验法在岩体统计均质区划分中的应用[J]. 岩土工程学报, 2019, 41(12): 2374−2380.
Liu Jian, Chen Liang, Wang Ju, et al. Application of 2D K-S tests to evaluating statistical homogeneity of rock mass[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2374−2380.
|