Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 45 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
Xiao Ting,Liao Fei,Fu Guiwen, et al. An analysis of tropical cyclones rapid intensification and the statistical characteristics of sea surface temperature distribution[J]. Haiyang Xuebao,2023, 45(9):1–9 doi: 10.12284/hyxb2023130
Citation: Xiao Ting,Liao Fei,Fu Guiwen, et al. An analysis of tropical cyclones rapid intensification and the statistical characteristics of sea surface temperature distribution[J]. Haiyang Xuebao,2023, 45(9):1–9 doi: 10.12284/hyxb2023130

An analysis of tropical cyclones rapid intensification and the statistical characteristics of sea surface temperature distribution

doi: 10.12284/hyxb2023130
  • Received Date: 2022-11-01
  • Rev Recd Date: 2023-06-07
  • Available Online: 2023-09-06
  • Publish Date: 2023-09-30
  • To better understand the influence of sea surface temperature (SST) on tropical cyclones rapidly intensifying, the characteristics of rapid changes in sea surface temperature and intensity of tropical cyclones in the western North Pacific during 1979−2019 were statistically analyzed using the tropical cyclones best track data compiled by the Shanghai Typhoon Research Institute of the China Meteorological Administration and the sea surface temperature data provided by European Centre for Medium-Range Weather Forecasts. The results indicate the following: (1) About 90% of the rapid intensification of tropical cyclones occurred in summer and autumn, accounting for 32.8% and 56.4% of the total number of rapid intensification respectively. Most tropical cyclones are dominated by rapid intensification across one intensity level, rapid intensification from a severe tropical storm to a typhoon and rapid intensification from a typhoon to a severe typhoon are the two conditions that occur more frequently. (2) The SST conditions greater than 28℃ in summer and 27.5℃ in autumn are conducive to the rapid intensification of tropical cyclones. Lower intensity of tropical cyclones require higher SST (> 29℃) for rapid intensification. The faster translation speed of tropical cyclones is conducive to maintaining high SST environment at its center. (3) When the time variation of SST is within ±0.2℃/(6 h), the horizontal spatial gradient is less than 0.4℃/(°), which is the favorable condition for the rapid intensification of tropical cyclone; the stronger the tropical cyclone is, the more stable the SST environment is needed. (4) When tropical cyclone is a severe tropical storm or above, it is better to judge whether rapid intensification occurs by using only the SST conditions. This work quantifies the SST environment conducive to tropical cyclone intensification and provides a technical reference for quantitative prediction of tropical cyclone intensity evolution based on SST.
  • loading
  • [1]
    许映龙, 张玲, 高拴柱. 我国台风预报业务的现状及思考[J]. 气象, 2010, 36(7): 43−49.

    Xu Yinglong, Zhang Ling, Gao Shuanzhu. The advances and discussions on China operational typhoon forecasting[J]. Meteorological Monthly, 2010, 36(7): 43−49.
    [2]
    Montgomery M T, Smith R K. Recent developments in the fluid dynamics of tropical cyclones[J]. Annual Review of Fluid Mechanics, 2017, 49(1): 541−574. doi: 10.1146/annurev-fluid-010816-060022
    [3]
    张守峰, 余晖, 向纯怡. 中央气象台台风强度综合预报误差分析[J]. 气象, 2015, 41(10): 1278−1285.

    Zhang Shoufeng, Yu Hui, Xiang Chunyi. Error analysis on official typhoon intensity forecasts of CMO from 2001 to 2012[J]. Meteorological Monthly, 2015, 41(10): 1278−1285.
    [4]
    林良勋, 梁巧倩, 黄忠. 华南近海急剧加强热带气旋及其环流综合分析[J]. 气象, 2006, 32(2): 14−18.

    Lin Liangxun, Liang Qiaoqian, Huang Zhong. Analysis of circulation pattern of rapidly intensified offshore tropical cyclones of South China[J]. Meteorological Monthly, 2006, 32(2): 14−18.
    [5]
    Emanuel K A. The maximum intensity of hurricanes[J]. Journal of the Atmospheric Sciences, 1988, 45(7): 1143−1155. doi: 10.1175/1520-0469(1988)045<1143:TMIOH>2.0.CO;2
    [6]
    Schade L R. Tropical cyclone intensity and sea surface temperature[J]. Journal of the Atmospheric Sciences, 2000, 57(18): 3122−3130. doi: 10.1175/1520-0469(2000)057<3122:TCIASS>2.0.CO;2
    [7]
    Demaria M, Kaplan J. Sea surface temperature and the maximum intensity of Atlantic tropical cyclones[J]. Journal of Climate, 1994, 7(9): 1324−1334. doi: 10.1175/1520-0442(1994)007<1324:SSTATM>2.0.CO;2
    [8]
    Cione J J, Uhlhorn E W. Sea surface temperature variability in hurricanes: Implications with respect to intensity change[J]. Monthly Weather Review, 2003, 131(8): 1783−1796. doi: 10.1175//2562.1
    [9]
    Ramsay H A, Sobel A H. Effects of relative and absolute sea surface temperature on tropical cyclone potential intensity using a single-column model[J]. Journal of Climate, 2011, 24(1): 183−193. doi: 10.1175/2010JCLI3690.1
    [10]
    Chan J C L, Duan Yihong, Shay L K. Tropical cyclone intensity change from a simple ocean-atmosphere coupled model[J]. Journal of the Atmospheric Sciences, 2001, 58(2): 154−172. doi: 10.1175/1520-0469(2001)058<0154:TCICFA>2.0.CO;2
    [11]
    杨诗琪, 李英, 陈联寿. 西北太平洋热带气旋强度变化的若干特征[J]. 热带气象学报, 2017, 33(5): 666−674.

    Yang Shiqi, Li Ying, Chen Lianshou. The characteristics of tropical cyclone intensity change in western North Pacific[J]. Journal of Tropical Meteorology, 2017, 33(5): 666−674.
    [12]
    Xu Jing, Wang Yuqing. Dependence of tropical cyclone intensification rate on sea surface temperature, storm intensity, and size in the western North Pacific[J]. Weather and Forecasting, 2018, 33(2): 523−537. doi: 10.1175/WAF-D-17-0095.1
    [13]
    Kaplan J, DeMaria M. Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin[J]. Weather and Forecasting, 2003, 18(6): 1093−1108. doi: 10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2
    [14]
    Evans J L. Sensitivity of tropical cyclone intensity to sea surface temperature[J]. Journal of Climate, 1993, 6(6): 1133−1140. doi: 10.1175/1520-0442(1993)006<1133:SOTCIT>2.0.CO;2
    [15]
    Holliday C R, Thompson A H. Climatological characteristics of rapidly intensifying typhoons[J]. Monthly Weather Review, 1979, 107(8): 1022−1034. doi: 10.1175/1520-0493(1979)107<1022:CCORIT>2.0.CO;2
    [16]
    陈乾金. 我国近海台风突然加强和眼结构变化及其与环流背景关系的统计研究[J]. 海洋学报, 1996, 18(3): 121−127.

    Chen Qianjin. Statistical study on sudden intensification and eye structure changes of typhoons in the nearshore waters of China and their relationship with circulation background[J]. Haiyang Xuebao, 1996, 18(3): 121−127.
    [17]
    郑峰, 曾智华, 雷小途, 等. 中国近海突然增强台风统计分析[J]. 高原气象, 2016, 35(1): 198−210.

    Zheng Feng, Zeng Zhihua, Lei Xiaotu, et al. A statistical study of rapid intensification of typhoons over coastal water of China[J]. Plateau Meteorology, 2016, 35(1): 198−210.
    [18]
    Wang Xidong, Wang Chunzai, Zhang Liping, et al. Multidecadal variability of tropical cyclone rapid intensification in the western North Pacific[J]. Journal of Climate, 2015, 28(9): 3806−3820. doi: 10.1175/JCLI-D-14-00400.1
    [19]
    Wada A. Verification of tropical cyclone heat potential for tropical cyclone intensity forecasting in the western North Pacific[J]. Journal of Oceanography, 2015, 71(4): 373−387. doi: 10.1007/s10872-015-0298-0
    [20]
    Wu C C, Tu W T, Pun I F, et al. Tropical cyclone-ocean interaction in Typhoon Megi (2010)—A synergy study based on ITOP observations and atmosphere-ocean coupled model simulations[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(1): 153−167. doi: 10.1002/2015JD024198
    [21]
    Chih C H, Wu C C. Exploratory analysis of upper-ocean heat content and sea surface temperature underlying tropical cyclone rapid intensification in the western North Pacific[J]. Journal of Climate, 2020, 33(3): 1031−1050. doi: 10.1175/JCLI-D-19-0305.1
    [22]
    胡娅敏, 宋丽莉, 罗晓玲. 近58年登陆广东热带气旋位置和生成源地的变化[J]. 中山大学学报(自然科学版), 2011, 50(4): 113−120.

    Hu Yamin, Song Lili, Luo Xiaoling. The variation of the location and source region of tropical cyclones making landfall in Guangdong over the past 58 years[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2011, 50(4): 113−120.
    [23]
    Chan J C L. Decadal variations of intense typhoon occurrence in the western North Pacific[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2008, 464(2089): 249−272. doi: 10.1098/rspa.2007.0183
    [24]
    Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730): 1999−2049. doi: 10.1002/qj.3803
    [25]
    廖菲, 李文婷, 张子然, 等. 1949−2017年南海海域热带气旋强度和路径快速变化统计特征[J]. 海洋学报, 2019, 41(9): 126−135.

    Liao Fei, Li Wenting, Zhang Ziran, et al. Analysis of rapid changes of tropical cyclones over the South China Sea for 1949–2017[J]. Haiyang Xuebao, 2019, 41(9): 126−135.
    [26]
    薛根元, 张建海, 陈红梅, 等. 超强台风Saomai(0608)加强成因分析及海温影响的数值试验研究[J]. 第四纪研究, 2007, 27(3): 311−321.

    Xue Genyuan, Zhang Jianhai, Chen Hongmei, et al. Analysis on causes of strengthening of super strong typhoon Saomai (0608) and numerical experiments of the impact of SST on its intensity[J]. Quaternary Sciences, 2007, 27(3): 311−321.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article views (306) PDF downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return