Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 45 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
Zhang Haorui,Zhou Lei. The distribution of eastward propagating pathways of the Tropical Intraseasonal Oscillation and its mechanism in the Maritime Continent[J]. Haiyang Xuebao,2023, 45(10):13–30 doi: 10.12284/hyxb2023125
Citation: Zhang Haorui,Zhou Lei. The distribution of eastward propagating pathways of the Tropical Intraseasonal Oscillation and its mechanism in the Maritime Continent[J]. Haiyang Xuebao,2023, 45(10):13–30 doi: 10.12284/hyxb2023125

The distribution of eastward propagating pathways of the Tropical Intraseasonal Oscillation and its mechanism in the Maritime Continent

doi: 10.12284/hyxb2023125
  • Received Date: 2023-04-09
  • Rev Recd Date: 2023-04-30
  • Available Online: 2023-11-02
  • Publish Date: 2023-10-30
  • Using Tropical Rainfall Measurement Mission 3B42 rainfall data, this study tracks pathways of Tropical Intraseasonal Oscillations (MJO) from a Lagrange perspective, analyses their distribution in the Maritime Continent (100°−120°E) and further discusses its mechanism. Identifying a raining area with above 12 mm in 24 hours precipitation as a MJO convective region and using its centroid as MJO convective center, pathways of MJO are tracked and a set of pathways is given. Because eastward propagating MJO events happen mostly in boreal winter, this study focuses on the distribution of pathways of MJO events in boreal winter. The results show that if measured by precipitation MJO moves through the Maritime Continent mostly near the equator (5°S−5°N), which is different from past research results that MJO detours to the south of the Maritime Continent measured by using outgoing long wave radiation (OLR) as a index. Besides, the conclusion that the precipitation associated with MJO moves through the Maritime Continent mostly near the equator is independent of background climate patterns like ENSO or IOD. The analysis of the mechanism shows that pathways of the precipitation associated with MJO through the Maritime Continent are mostly regulated by strong latent heat flux anomalies and are inconsistent with regions with warm sea surface temperature anomalies, which leads to different pathways of MJO moving through the Maritime Continent from different perspectives of precipitation and OLR.
  • loading
  • [1]
    Madden R A, Julian P R. Description of global-scale circulation cells in the tropics with a 40−50 day period[J]. Journal of the Atmospheric Sciences, 1972, 29(6): 1109−1123. doi: 10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2
    [2]
    Zhang Chidong. Madden-julian oscillation[J]. Reviews of Geophysics, 2005, 43(2): RG2003.
    [3]
    Kerns B W, Chen S S. A 20-year climatology of madden-julian oscillation convection: large-scale precipitation tracking from TRMM-GPM rainfall[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(7): e2019JD032142. doi: 10.1029/2019JD032142
    [4]
    Zhou Lei, Murtugudde R. Oceanic impacts on MJOs detouring near the maritime continent[J]. Journal of Climate, 2020, 33(6): 2371−2388. doi: 10.1175/JCLI-D-19-0505.1
    [5]
    Wilson E A, Gordon A L, Kim D. Observations of the madden Julian oscillation during Indian Ocean dipole events[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(6): 2588−2599. doi: 10.1002/jgrd.50241
    [6]
    Lau K M, Chan P H. Aspects of the 40−50 day oscillation during the northern summer as inferred from outgoing longwave radiation[J]. Monthly Weather Review, 1986, 114(7): 1354−1367. doi: 10.1175/1520-0493(1986)114<1354:AOTDOD>2.0.CO;2
    [7]
    Knutson T R, Weickmann K M. 30−60 day atmospheric oscillations: composite life cycles of convection and circulation anomalies[J]. Monthly Weather Review, 1987, 115(7): 1407−1436. doi: 10.1175/1520-0493(1987)115<1407:DAOCLC>2.0.CO;2
    [8]
    Zhang Chidong, Hendon H H. Propagating and standing components of the Intraseasonal Oscillation in tropical convection[J]. Journal of the Atmospheric Sciences, 1997, 54(6): 741−752. doi: 10.1175/1520-0469(1997)054<0741:PASCOT>2.0.CO;2
    [9]
    Maloney E D, Hartmann D L. Frictional moisture convergence in a composite life cycle of the Madden-Julian Oscillation[J]. Journal of Climate, 1998, 11(9): 2387−2403. doi: 10.1175/1520-0442(1998)011<2387:FMCIAC>2.0.CO;2
    [10]
    Lo F, Hendon H H. Empirical extended-range prediction of the Madden-Julian Oscillation[J]. Monthly Weather Review, 2000, 128(7): 2528−2543. doi: 10.1175/1520-0493(2000)128<2528:EERPOT>2.0.CO;2
    [11]
    Matthews A J. Propagation mechanisms for the Madden-Julian Oscillation[J]. Quarterly Journal of the Royal Meteorological Society, 2000, 126(569): 2637−2651.
    [12]
    Kessler W S. EOF representations of the Madden-Julian Oscillation and its connection with ENSO[J]. Journal of Climate, 2001, 14(13): 3055−3061. doi: 10.1175/1520-0442(2001)014<3055:EROTMJ>2.0.CO;2
    [13]
    Adames Á F, Wallace J M. Three-dimensional structure and evolution of the MJO and its relation to the mean flow[J]. Journal of the Atmospheric Sciences, 2014, 71(6): 2007−2026. doi: 10.1175/JAS-D-13-0254.1
    [14]
    Straub K H. MJO initiation in the real-time multivariate MJO index[J]. Journal of Climate, 2013, 26(4): 1130−1151. doi: 10.1175/JCLI-D-12-00074.1
    [15]
    Kiladis G N, Dias J, Straub K H, et al. A comparison of OLR and circulation-based indices for tracking the MJO[J]. Monthly Weather Review, 2014, 142(5): 1697−1715. doi: 10.1175/MWR-D-13-00301.1
    [16]
    Inness P M, Slingo J M. The interaction of the Madden-Julian Oscillation with the Maritime Continent in a GCM[J]. Quarterly Journal of the Royal Meteorological Society, 2006, 132(618): 1645−1667. doi: 10.1256/qj.05.102
    [17]
    Kerns B W, Chen S S. Large-scale precipitation tracking and the MJO over the Maritime Continent and Indo-Pacific warm pool[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(15): 8755−8776. doi: 10.1002/2015JD024661
    [18]
    Kim D, Kim H, Lee M I. Why does the MJO detour the Maritime Continent during austral summer?[J]. Geophysical Research Letters, 2017, 44(5): 2579−2587. doi: 10.1002/2017GL072643
    [19]
    Zhang Chidong, Ling Jian. Barrier effect of the indo-pacific maritime continent on the MJO: perspectives from tracking MJO precipitation[J]. Journal of Climate, 2017, 30(9): 3439−3459. doi: 10.1175/JCLI-D-16-0614.1
    [20]
    Weaver S J, Wang Wanqiu, Chen Mingyue, et al. Representation of MJO variability in the NCEP climate forecast system[J]. Journal of Climate, 2011, 24(17): 4676−4694. doi: 10.1175/2011JCLI4188.1
    [21]
    Wang Wanqiu, Hung Mengpai, Weaver S J, et al. MJO prediction in the NCEP climate forecast system version 2[J]. Climate Dynamics, 2014, 42(9/10): 2509−2520.
    [22]
    Kim H M, Kim D, Vitart F, et al. MJO propagation across the maritime continent in the ECMWF ensemble prediction system[J]. Journal of Climate, 2016, 29(11): 3973−3988. doi: 10.1175/JCLI-D-15-0862.1
    [23]
    Wu C H, Hsu H H. Topographic influence on the MJO in the maritime continent[J]. Journal of Climate, 2009, 22(20): 5433−5448. doi: 10.1175/2009JCLI2825.1
    [24]
    Tan Haochen, Ray P, Barrett B S, et al. Role of topography on the MJO in the maritime continent: a numerical case study[J]. Climate Dynamics, 2020, 55(1/2): 295−314.
    [25]
    Sobel A H, Maloney E D, Bellon G, et al. Surface fluxes and tropical intraseasonal variability: a reassessment[J]. Journal of Advances in Modeling Earth Systems, 2010, 2(1): 1−27.
    [26]
    Krishnamurti T N, Oosterhof D K, Mehta A V. Air-sea interaction on the time scale of 30 to 50 days[J]. Journal of the Atmospheric Sciences, 1988, 45(8): 1304−1322. doi: 10.1175/1520-0469(1988)045<1304:AIOTTS>2.0.CO;2
    [27]
    Tseng W L, Hsu H H, Keenlyside N, et al. Effects of surface orography and land-sea contrast on the Madden-Julian Oscillation in the maritime continent: a numerical study using ECHAM5-SIT[J]. Journal of Climate, 2017, 30(23): 9725−9741. doi: 10.1175/JCLI-D-17-0051.1
    [28]
    Huffman G J, Bolvin D T, Nelkin E J, et al. The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales[J]. Journal of Hydrometeorology, 2007, 8(1): 38−55. doi: 10.1175/JHM560.1
    [29]
    Reynolds R W, Smith T M, Liu Chunying, et al. Daily high-resolution-blended analyses for sea surface temperature[J]. Journal of Climate, 2007, 20(22): 5473−5496. doi: 10.1175/2007JCLI1824.1
    [30]
    Kalnay E, Kanamitsu M, Kistler R, et al. The NCEP/NCAR 40-year reanalysis project[J]. Bulletin of the American Meteorological Society, 1996, 77(3): 437−472. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    [31]
    Lau K M, Chan P H. Aspects of the 40−50 day oscillation during the northern winter as inferred from outgoing longwave radiation[J]. Monthly Weather Review, 1985, 113(11): 1889−1909. doi: 10.1175/1520-0493(1985)113<1889:AOTDOD>2.0.CO;2
    [32]
    Rui Hualan, Wang Bin. Development characteristics and dynamic structure of tropical intraseasonal convection anomalies[J]. Journal of the Atmospheric Sciences, 1990, 47(3): 357−379. doi: 10.1175/1520-0469(1990)047<0357:DCADSO>2.0.CO;2
    [33]
    Trenberth K E. The definition of El Niño[J]. Bulletin of the American Meteorological Society, 1997, 78(12): 2771−2778. doi: 10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2
    [34]
    Zhou Lei, Ruan Ruomei, Murtugudde R. Impacts of detoured Madden-Julian Oscillations on the South Pacific convergence zone[J]. Journal of Climate, 2021, 34(13): 5461−5476.
    [35]
    Arakawa A, Schubert W H. Interaction of a cumulus cloud ensemble with the large-scale environment, Part I[J]. Journal of the Atmospheric Sciences, 1974, 31(3): 674−701. doi: 10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2
    [36]
    Emanuel K A, Neelin J D, Bretherton C S. On large-scale circulations in convecting atmospheres[J]. Quarterly Journal of the Royal Meteorological Society, 1994, 120(519): 1111−1143.
    [37]
    Arakawa A. The cumulus parameterization problem: past, present, and future[J]. Journal of Climate, 2004, 17(13): 2493−2525. doi: 10.1175/1520-0442(2004)017<2493:RATCPP>2.0.CO;2
    [38]
    Shinoda T, Hendon H H, Glick J. Intraseasonal variability of surface fluxes and sea surface temperature in the tropical western Pacific and Indian Oceans[J]. Journal of Climate, 1998, 11(7): 1685−1702. doi: 10.1175/1520-0442(1998)011<1685:IVOSFA>2.0.CO;2
    [39]
    Araligidad N M, Maloney E D. Wind-driven latent heat flux and the Intraseasonal Oscillation[J]. Geophysical Research Letters, 2008, 35(4): L04815.
    [40]
    Sobel A H, Maloney E D, Bellon G, et al. The role of surface heat fluxes in tropical Intraseasonal Oscillations[J]. Nature Geoscience, 2008, 1(10): 653−657. doi: 10.1038/ngeo312
    [41]
    Fink A, Speth P. Some potential forcing mechanisms of the year-to-year variability of the tropical convection and its intraseasonal (25-70-day) variability[J]. International Journal of Climatology, 1997, 17(14): 1513−1534. doi: 10.1002/(SICI)1097-0088(19971130)17:14<1513::AID-JOC210>3.0.CO;2-U
    [42]
    Zhang Chidong, Hendon H H, Kessler W S, et al. A workshop on the MJO and ENSO[J]. Bulletin of the American Meteorological Society, 2001, 82(5): 971−976. doi: 10.1175/1520-0477(2001)082<0971:MSAWOT>2.3.CO;2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(1)

    Article views (183) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return