Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 45 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
Lin Jinhui,Zou Jianjun,Shi Xuefa, et al. Rapid changes in sedimentary environment on the northern slope of the Bering Sea during the early Holocene[J]. Haiyang Xuebao,2023, 45(11):45–61 doi: 10.12284/hyxb2023124
Citation: Lin Jinhui,Zou Jianjun,Shi Xuefa, et al. Rapid changes in sedimentary environment on the northern slope of the Bering Sea during the early Holocene[J]. Haiyang Xuebao,2023, 45(11):45–61 doi: 10.12284/hyxb2023124

Rapid changes in sedimentary environment on the northern slope of the Bering Sea during the early Holocene

doi: 10.12284/hyxb2023124
  • Received Date: 2023-01-20
  • Rev Recd Date: 2023-05-04
  • Available Online: 2023-10-16
  • Publish Date: 2023-11-30
  • It has been an important research topic in oceanography and climatology to understand the evolution of marine environment in the context of anathroprogenic warming. In the geological past, the Earth has experienced several warming periods (including the early Holocene), which provide natural analogs for future climate. The global climate experienced rapid warming during the early Holocene, accompanied by ice sheet melting and rapid sea level rise, which have significantly impacted sedimentary processes and marine environment in high-latitude marginal seas, including the Bering Sea. The Bering Sea consists of a broad continental shelf, adjacent to the North American continent, and receives material supplies from the Yukon River, Anadyr River and Kuskokwim River. There are still significant gaps in our understanding of how the Bering Sea responds to the early Holocene climate. In this study, high-resolution analysis of major and minor elements in bulk sediments of Core LV63-19-3 retrieved from the northern slope of the Bering Sea, in combination with a well-constrained sedimentary age model to investigate the sedimentary environment changes on the northern Bering Sea slope during the early to middle Holocene (11.7–5.5 ka BP). The results show that the sedimentation rate on the northern continental slope of Bering Sea was as high as 392.9 cm/ka during 11.5–11 ka BP, and decreased rapidly to 17.2 cm/ka after 9.7 ka BP. At 11–10.7 ka BP, a dark laminated sediment layer about of 40 cm thick was found. In the period of high sedimentation rate, the average grain size of sediments was finer, and increased gradually after 9 kaBP. Both major and minor element concentrations indicate that the lithological properties of terrigenous clastic sediments were mainly felsic sediments with a small amount of pyroclastic contributions. The high sediment rate corresponds to the Meltwater Pulse-1B event (11.4–11.1 ka BP) and resulted in a blooming of siliceous productivity on the Bering Sea continental slope. In the study area from 11 ka BP to 10.7 ka BP, the increase in seasonal sea ice coverage inhibited the oxygen supply from the atmosphere to surface water and subsequent transport to the bottom water, while the glacial meltwater and the persistent high productivity in summer and autumn further exacerbated the surface water stratification and ocean interior oxygen consumption on the continental slope of the Bering Sea, both of which together triggered the formation of laminated sediment. After 9 ka BP, the seasonal sea ice activity in the Bering Sea increased gradually, but the mass accumulation rate of terrigenous detrital materials decreased, indicateing a decrease in the supply of terrigenous materials to the study area along with sea level rise. We suggest that the rapid shift in early Holocene sedimentary environment on the northern Bering Sea continental slope is the result of a combination of sea level, Meltwater Pulse 1B event and seasonal sea ice activity, which is actually controlled by high-latitude solar insolation, North American ice sheet melting, and global climate.
  • loading
  • [1]
    IPCC. Climate change 2014: The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [M]. Cambridge: Cambridge University Press, 2014.
    [2]
    Berger A, Loutre M F. Insolation values for the climate of the last 10 million years[J]. Quaternary Science Reviews, 1991, 10(4): 297−317. doi: 10.1016/0277-3791(91)90033-Q
    [3]
    Rogelj J, Den Elzen M, Höhne N, et al. Paris Agreement climate proposals need a boost to keep warming well below 2℃[J]. Nature, 2016, 534(7609): 631−639. doi: 10.1038/nature18307
    [4]
    IPCC. Climate change 2021: The Physical Science Basis: Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2021.
    [5]
    IPCC. Climate change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2007.
    [6]
    Springer A M, Mcroy C P, Flint M V. The Bering Sea Green Belt: shelf-edge processes and ecosystem production[J]. Fisheries Oceanography, 1996, 5(3/4): 205−223. doi: 10.1111/j.1365-2419.1996.tb00118.x
    [7]
    Pelto B M. Sedimentological, Geochemical and Isotopic Evidence for the Establishment of Modern Circulation through the Bering Strait and Depositional Environment History of the Bering and Chukchi Seas during the Last Deglaciation[D]. Amherst: University of Massachusetts Amherst, 2014.
    [8]
    Broecker W S, Peng T H, Jouzel J, et al. The magnitude of global fresh-water transports of importance to ocean circulation[J]. Climate Dynamics, 1990, 4(2): 73−79. doi: 10.1007/BF00208902
    [9]
    Wijffels S E, Schmitt R W, Bryden H L, et al. Transport of freshwater by the oceans[J]. Journal of Physical Oceanography, 1992, 22(2): 155−162. doi: 10.1175/1520-0485(1992)022<0155:TOFBTO>2.0.CO;2
    [10]
    Johannessen O M, Muench R D, Overland J E. The Polar Oceans and Their Role in Shaping the Global Environment: the Nansen Centennial Volume[M]. Washington DC, USA: American Geophysical Union, 1994.
    [11]
    Keigwin L D, Cook M S. A role for North Pacific salinity in stabilizing North Atlantic climate[J]. Paleoceanography, 2007, 22(3): PA3102.
    [12]
    Stabeno P J, Bond N A, Kachel N B, et al. On the temporal variability of the physical environment over the south-eastern Bering Sea[J]. Fisheries Oceanography, 2001, 10(1): 81−98. doi: 10.1046/j.1365-2419.2001.00157.x
    [13]
    Sun Yechen, Xiao Wenshen, Wang Rujian, et al. Changes in sediment provenance and ocean circulation on the northern slope of the Bering Sea since the last deglaciation[J]. Marine Geology, 2021, 436: 106492. doi: 10.1016/j.margeo.2021.106492
    [14]
    Rella S F, Tada R, Nagashima K, et al. Abrupt changes of intermediate water properties on the northeastern slope of the Bering Sea during the last glacial and deglacial period[J]. Paleoceanography, 2012, 27(3): PA3203.
    [15]
    Brunelle B G, Sigman D M, Jaccard S L, et al. Glacial/interglacial changes in nutrient supply and stratification in the western subarctic North Pacific since the penultimate glacial maximum[J]. Quaternary Science Reviews, 2010, 29(19/20): 2579−2590. doi: 10.1016/j.quascirev.2010.03.010
    [16]
    Nakatsuka T, Watanabe K, Handa N, et al. Glacial to interglacial surface nutrient variations of Bering Deep Basins recorded by δ13C and δ15N of sedimentary organic matter[J]. Paleoceanography and Paleoclimatology, 1995, 10(6): 1047−1061.
    [17]
    Gorbarenko S A, Basov I A, Chekhovskaya M P, et al. Orbital and millennium scale environmental changes in the southern Bering Sea during the last glacial-Holocene: Geochemical and paleontological evidence[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2005, 52(16/18): 2174−2185. doi: 10.1016/j.dsr2.2005.08.005
    [18]
    Okazaki Y, Takahashi K, Asahi H, et al. Productivity changes in the Bering Sea during the late Quaternary[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2005, 52(16/18): 2150−2162. doi: 10.1016/j.dsr2.2005.07.003
    [19]
    Brunelle B G, Sigman D M, Cook M S, et al. Evidence from diatom-bound nitrogen isotopes for subarctic Pacific stratification during the last ice age and a link to North Pacific denitrification changes[J]. Paleoceanography, 2007, 22(1): PA1215.
    [20]
    Caissie B E, Brigham-Grette J, Lawrence K T, et al. Last Glacial Maximum to Holocene sea surface conditions at Umnak Plateau, Bering Sea, as inferred from diatom, alkenone, and stable isotope records[J]. Paleoceanography, 2010, 25(1): PA1206.
    [21]
    Kim S, Khim B K, Uchida M, et al. Millennial-scale paleoceanographic events and implication for the intermediate-water ventilation in the northern slope area of the Bering Sea during the last 71 kyrs[J]. Global and Planetary Change, 2011, 79(1/2): 89−98.
    [22]
    Riethdorf J R, Thibodeau B, Ikehara M, et al. Surface nitrate utilization in the Bering Sea since 180 ka BP: Insight from sedimentary nitrogen isotopes[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2016, 125−126: 163−176. doi: 10.1016/j.dsr2.2015.03.007
    [23]
    Méheust M, Fahl K, Stein R. Variability in modern sea surface temperature, sea ice and terrigenous input in the sub-polar North Pacific and Bering Sea: Reconstruction from biomarker data[J]. Organic Geochemistry, 2013, 57: 54−64. doi: 10.1016/j.orggeochem.2013.01.008
    [24]
    Méheust M, Stein R, Fahl K, et al. Sea-ice variability in the subarctic North Pacific and adjacent Bering Sea during the past 25 ka: New insights from IP25 and $ {\rm{U}}^{k'} _{37} $ proxy records[J]. Arktos, 2018, 4(1): 1−19.
    [25]
    Feely R A, Sabine C L, Lee K, et al. In situ calcium carbonate dissolution in the Pacific Ocean[J]. Global Biogeochemical Cycles, 2002, 16(4): 1144.
    [26]
    Pelto B M, Caissie B E, Petsch S T, et al. Oceanographic and climatic change in the Bering Sea, last glacial maximum to Holocene[J]. Paleoceanography and Paleoclimatology, 2018, 33(1): 93−111. doi: 10.1002/2017PA003265
    [27]
    Cook M S, Keigwin L D, Sancetta C A. The deglacial history of surface and intermediate water of the Bering Sea[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2005, 52(16/18): 2163−2173. doi: 10.1016/j.dsr2.2005.07.004
    [28]
    Kuehn H, Lembke-Jene L, Gersonde R, et al. Laminated sediments in the Bering Sea reveal atmospheric teleconnections to Greenland climate on millennial to decadal timescales during the last deglaciation[J]. Climate of the Past, 2014, 10(6): 2215−2236. doi: 10.5194/cp-10-2215-2014
    [29]
    Zheng Yan, van Geen A, Anderson R F, et al. Intensification of the northeast Pacific oxygen minimum zone during the Bölling-Alleröd warm period[J]. Paleoceanography, 2000, 15(5): 528−536. doi: 10.1029/1999PA000473
    [30]
    Kaufman D S, Ager T A, Anderson N J, et al. Holocene thermal maximum in the Western Arctic (0–180°W)[J]. Quaternary Science Reviews, 2004, 23(5/6): 529−560. doi: 10.1016/j.quascirev.2003.09.007
    [31]
    Lambeck K, Rouby H, Purcell A, et al. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(43): 15296−15303.
    [32]
    VanLaningham S, Pisias N G, Duncan R A, et al. Glacial-interglacial sediment transport to the Meiji Drift, Northwest Pacific Ocean: evidence for timing of Beringian outwashing[J]. Earth and Planetary Science Letters, 2009, 277(1/2): 64−72. doi: 10.1016/j.jpgl.2008.09.033
    [33]
    Asahara Y, Takeuchi F, Nagashima K, et al. Provenance of terrigenous detritus of the surface sediments in the Bering and Chukchi Seas as derived from Sr and Nd isotopes: Implications for recent climate change in the Arctic regions[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2012, 61: 155−171.
    [34]
    Keigwin L D, Donnelly J P, Cook M S, et al. Rapid sea-level rise and Holocene climate in the Chukchi Sea[J]. Geology, 2006, 34(10): 861−864. doi: 10.1130/G22712.1
    [35]
    Meyer V D, Hefter J, Köhler P, et al. Permafrost-carbon mobilization in Beringia caused by deglacial meltwater runoff, sea-level rise and warming[J]. Environmental Research Letters, 2019, 14(8): 085003. doi: 10.1088/1748-9326/ab2653
    [36]
    Heaton T J, Köhler P, Butzin M, et al. Marine20—the marine radiocarbon age calibration curve (0–55, 000 cal BP)[J]. Radiocarbon, 2020, 62(4): 779−820. doi: 10.1017/RDC.2020.68
    [37]
    Weltje G J. End-member modeling of compositional data: Numerical-statistical algorithms for solving the explicit mixing problem[J]. Mathematical Geology, 1997, 29(4): 503−549. doi: 10.1007/BF02775085
    [38]
    Weltje G J, Prins M A. Muddled or mixed? Inferring palaeoclimate from size distributions of deep-sea clastics[J]. Sedimentary Geology, 2003, 162(1/2): 39−62. doi: 10.1016/S0037-0738(03)00235-5
    [39]
    Paterson G A, Heslop D. New methods for unmixing sediment grain size data[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(1/2): 4494−4506.
    [40]
    豆汝席, 邹建军, 石学法, 等. 3万年以来日本海西部海冰活动变化[J]. 第四纪研究, 2020, 40(3): 690−703.

    Dou Ruxi, Zou Jianjun, Shi Xuefa, et al. Reconstructed changes in sea ice in the western Sea of Japan over the last 30 000 years[J]. Quaternary Sciences, 2020, 40(3): 690−703.
    [41]
    Gromet L P, Haskin L A, Korotev R L, et al. The “North American shale composite”: Its compilation, major and trace element characteristics[J]. Geochimica et Cosmochimica Acta, 1984, 48(12): 2469−2482. doi: 10.1016/0016-7037(84)90298-9
    [42]
    杨守业, 李从先. REE示踪沉积物物源研究进展[J]. 地球科学进展, 1999, 14(2): 164−167.

    Yang Shouye, Li Congxian. Reseach progress in REE teracer for sediment source[J]. Advance in Earth Sciences, 1999, 14(2): 164−167.
    [43]
    陈志华, 石学法, 韩贻兵, 等. 北冰洋西部表层沉积物粘土矿物分布及环境指示意义[J]. 海洋科学进展, 2004, 22(4): 446−454.

    Chen Zhihua, Shi Xuefa, Han Yibin, et al. Clay mineral distributions in surface sediments from the western arctic ocean and their implications for sediment environments[J]. Advances in Marine Science, 2004, 22(4): 446−454.
    [44]
    Talley L D. An Okhotsk Sea water anomaly: implications for ventilation in the North Pacific[J]. Deep-Sea Research Part A: Oceanographic Research Papers, 1991, 38: S171−S190. doi: 10.1016/S0198-0149(12)80009-4
    [45]
    Lembke-Jene L, Tiedemann R, Nürnberg D, et al. Deglacial variability in Okhotsk Sea Intermediate Water ventilation and biogeochemistry: Implications for North Pacific nutrient supply and productivity[J]. Quaternary Science Reviews, 2017, 160: 116−137. doi: 10.1016/j.quascirev.2017.01.016
    [46]
    朱爱美, 刘季花, 邹建军, 等. 亚北极太平洋边缘海表层沉积物地球化学特征[J]. 海洋科学进展, 2019, 37(4): 601−612.

    Zhu Aimei, Liu Jihua, Zou Jianjun, et al. Characteristics of sedimentary geochemistry of surface sediments in the subarctic Pacific marginal sea[J]. Advance in Marine Science, 2019, 37(4): 601−612.
    [47]
    Roser B P, Korsch R J. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data[J]. Chemical Geology, 1988, 67(1/2): 119−139. doi: 10.1016/0009-2541(88)90010-1
    [48]
    Elderfield H, Upstill-Goddard R, Sholkovitz E R. The rare earth elements in rivers, estuaries, and coastal seas and their significance to the composition of ocean waters[J]. Geochimica et Cosmochimica Acta, 1990, 54(4): 971−991. doi: 10.1016/0016-7037(90)90432-K
    [49]
    Gaillardet J, Viers J, Dupré B. Trace elements in river waters[J]. Treatise on Geochemistry, 2003, 5: 225−272.
    [50]
    Serno S, Winckler G, Anderson R F, et al. Eolian dust input to the Subarctic North Pacific[J]. Earth and Planetary Science Letters, 2014, 387: 252−263. doi: 10.1016/j.jpgl.2013.11.008
    [51]
    McCulloch M T, Perfit M R. 143Nd/144Nd, 87Sr/86Sr and trace element constraints on the petrogenesis of Aleutian island arc magmas[J]. Earth and Planetary Science Letters, 1981, 56: 167−179. doi: 10.1016/0012-821X(81)90124-2
    [52]
    沈兴艳, 万世明. 日本海第四纪沉积记录及其海陆联系的研究进展[J]. 海洋地质与第四纪地质, 2015, 35(6): 139−151. doi: 10.16562/j.cnki.0256-1492.2015.06.015

    Shen Xingyan, Wan Shiming. Research progress of quaternary depositional records of the Japan Sea and its implications for the linkages to the Asian continent[J]. Marine Geology & Quaternary Geology, 2015, 35(6): 139−151. doi: 10.16562/j.cnki.0256-1492.2015.06.015
    [53]
    Nagashima K, Asahara Y, Takeuchi F, et al. Contribution of detrital materials from the Yukon River to the continental shelf sediments of the Bering Sea based on the electron spin resonance signal intensity and crystallinity of quartz[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2012, 61−64: 145−154. doi: 10.1016/j.dsr2.2011.12.001
    [54]
    Domack E, Duran D, Leventer A, et al. Stability of the Larsen B ice shelf on the Antarctic Peninsula during the Holocene epoch[J]. Nature, 2005, 436(7051): 681−685. doi: 10.1038/nature03908
    [55]
    Peltier W R, Fairbanks R G. Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record[J]. Quaternary Science Reviews, 2006, 25(23/24): 3322−3337. doi: 10.1016/j.quascirev.2006.04.010
    [56]
    Ruan Jiaping, Huang Yuanhui, Shi Xuefa, et al. Holocene variability in sea surface temperature and sea ice extent in the northern Bering Sea: a multiple biomarker study[J]. Organic Geochemistry, 2017, 113: 1−9. doi: 10.1016/j.orggeochem.2017.08.006
    [57]
    Bard E, Hamelin B, Delanghe-Sabatier D. Deglacial Meltwater Pulse 1B and Younger Dryas sea levels revisited with boreholes at Tahiti[J]. Science, 2010, 327(5970): 1235−1237. doi: 10.1126/science.1180557
    [58]
    Sancetta C, Heusser L, Labeyrie L, et al. Wisconsin—Holocene paleoenvironment of the Bering Sea: Evidence from diatoms, pollen, oxygen isotopes and clay minerals[J]. Marine Geology, 1984, 62(1/2): 55−68. doi: 10.1016/0025-3227(84)90054-9
    [59]
    Keigwin L D, Jones G A, Froelich P N. A 15, 000 year paleoenvironmental record from Meiji Seamount, far northwestern Pacific[J]. Earth and Planetary Science Letters, 1992, 111(2/4): 425−440. doi: 10.1016/0012-821X(92)90194-Z
    [60]
    North Greenland Ice Core Project Members. High-resolution record of northern hemisphere climate extending into the last interglacial period[J]. Nature, 2004, 431(7005): 147−151. doi: 10.1038/nature02805
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(4)

    Article views (275) PDF downloads(59) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return