Citation: | Gao Xingguo,Wei Jinjin,Xin Mingzhen, et al. Iterative correction method of beam incident angle for ultra-short baseline underwater acoustic positioning[J]. Haiyang Xuebao,2023, 45(9):168–176 doi: 10.12284/hyxb2023122 |
[1] |
孙大军, 郑翠娥, 张居成, 等. 水声定位导航技术的发展与展望[J]. 中国科学院院刊, 2019, 34(3): 331−338.
Sun Dajun, Zheng Cuie, Zhang Jucheng, et al. Development and prospect for underwater acoustic positioning and navigation technology[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(3): 331−338.
|
[2] |
杨元喜, 徐天河, 薛树强. 我国海洋大地测量基准与海洋导航技术研究进展与展望[J]. 测绘学报, 2017, 46(1): 1−8.
Yang Yuanxi, Xu Tianhe, Xue Shuqiang. Progresses and prospects in developing marine geodetic datum and marine navigation of China[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(1): 1−8.
|
[3] |
Spiess F N, Chadwell C D, Hildebrand J A, et al. Precise GPS/Acoustic positioning of seafloor reference points for tectonic studies[J]. Physics of the Earth and Planetary Interiors, 1998, 108(2): 101−112. doi: 10.1016/S0031-9201(98)00089-2
|
[4] |
Ballu V, Ammann J, Pot O, et al. A seafloor experiment to monitor vertical deformation at the Lucky Strike volcano, Mid-Atlantic Ridge[J]. Journal of Geodesy, 2009, 83(2): 14−159.
|
[5] |
阳凡林, 康志忠, 独知行, 等. 海洋导航定位技术及其应用与展望[J]. 海洋测绘, 2006, 26(1): 71−74.
Yang Fanlin, Kang Zhizhong, Du Zhixing, et al. On the marine navigation positioning technology and its application and perspective[J]. Hydrographic Surveying and Charting, 2006, 26(1): 71−74.
|
[6] |
Alcocer A, Oliveira P, Pascoal A. Underwater acoustic positioning systems based on buoys with GPS[C]//Proceedings of the 8th European Conference on Underwater Acoustics. Protugal: [s.n.], 2006.
|
[7] |
Xin Mingzhen, Yang Fanlin, Liu Hui, et al. Single-difference dynamic positioning method for GNSS-acoustic intelligent buoys systems[J]. Journal of Navigation, 2020, 73(3): 646−657. doi: 10.1017/S0373463319000869
|
[8] |
刘焱雄, 彭琳, 吴永亭, 等. 超短基线水声定位系统校准方法研究[J]. 武汉大学学报: 信息科学版, 2006, 31(7): 610−612.
Liu Yanxiong, Peng Lin, Wu Yongting, et al. Calibration of transducer and transponder positions[J]. Geomatics and Information Science of Wuhan University, 2006, 31(7): 610−612.
|
[9] |
宁津生, 吴永亭, 孙大军. 长基线声学定位系统发展现状及其应用[J]. 海洋测绘, 2014, 34(1): 72−75. doi: 10.3969/j.issn.1671-3044.2014.01.021
Ning Jinsheng, Wu Yongting, Sun Dajun. The development of LBL acoustic positioning system and its application[J]. Hydrographic Surveying and Charting, 2014, 34(1): 72−75. doi: 10.3969/j.issn.1671-3044.2014.01.021
|
[10] |
吴永亭. LBL精密定位理论方法研究及软件系统研制[D]. 武汉: 武汉大学, 2013: 12-21.
Wu Yongting. Study on theory and method of precise LBL positioning and development of positioning software system[D]. Wuhan: Wuhan University, 2013: 12−21.
|
[11] |
李海鹏, 韩云峰, 郑翠娥. 声速修正技术在高精度水下定位系统中的应用[J]. 导航定位学报, 2020, 8(3): 47−52. doi: 10.3969/j.issn.2095-4999.2020.03.007
Li Haipeng, Han Yunfeng, Zheng Cuie. Application of sound speed correction technology in highly precise underwater positioning system[J]. Journal of Navigation and Positioning, 2020, 8(3): 47−52. doi: 10.3969/j.issn.2095-4999.2020.03.007
|
[12] |
郑翠娥. 超短基线定位技术在水下潜器对接中的应用研究[D]. 哈尔滨: 哈尔滨工程大学, 2008: 14-52.
Zheng Cuie. Application of USBL positioning technology on underwater submersible interfacing[D]. Harbin: Harbin Engineering University, 2008: 14−52.
|
[13] |
韩瑞宁. 超短基线定位精度的改进方法研究[D]. 青岛: 中国海洋大学, 2007: 5-19.
Han Ruining. The research of improved method for ultra short baseline position precision[D]. Qingdao: Ocean University of China, 2007: 5−19.
|
[14] |
喻敏. 长程超短基线定位系统研制[D]. 哈尔滨: 哈尔滨工程大学, 2006: 32-47.
Yu Min. Research on long range utral short baseline system[D]. Harbin: Harbin Engineering University, 2006: 32−47.
|
[15] |
韩云峰, 郑翠娥, 孙大军. 长基线声学定位系统跟踪解算优化方法[J]. 声学学报, 2017, 42(1): 14−20.
Han Yunfeng, Zheng Cuie, Sun Dajun. An optimized estimation method in long baseline acoustic positioning systems[J]. Acta Acustica, 2017, 42(1): 14−20.
|
[16] |
赵爽, 王振杰, 刘慧敏. 顾及声线入射角的水下定位随机模型[J]. 测绘学报, 2018, 47(9): 1280−1289.
Zhao Shuang, Wang Zhenjie, Liu Huimin. Investigation on underwater positioning stochastic model based on sound ray incidence angle[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(9): 1280−1289.
|
[17] |
辛明真, 阳凡林, 闫循鹏, 等. 一种等效声速梯度的迭代计算方法[J]. 海洋测绘, 2015, 35(5): 28−31, 42. doi: 10.3969/j.issn.1671-3044.2015.05.007
Xin Mingzhen, Yang Fanlin, Yan Xunpeng, et al. An equivalent sound velocity profile iterative algorithm[J]. Hydrographic Surveying and Charting, 2015, 35(5): 28−31, 42. doi: 10.3969/j.issn.1671-3044.2015.05.007
|
[18] |
赵荻能, 吴自银, 周洁琼, 等. 声速剖面精简运算的改进D-P算法及其评估[J]. 测绘学报, 2014, 43(7): 681−689. doi: 10.13485/j.cnki.11-2089.2014.00
Zhao Dineng, Wu Ziyin, Zhou Jieqiong, et al. A method for streamlining and assessing sound velocity profiles based on improved D-P algorithm[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(7): 681−689. doi: 10.13485/j.cnki.11-2089.2014.00
|
[19] |
Zheng Gen, Zhao Jianhu, Zhang Hongmei. An adaptive SVP simplification based on area difference[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(4): 53−63.
|
[20] |
辛明真, 阳凡林, 薛树强, 等. 顾及波束入射角的常梯度声线跟踪水下定位算法[J]. 测绘学报, 2020, 49(12): 1535−1542.
Xin Mingzhen, Yang Fanlin, Xue Shuqiang, et al. A constant gradient sound ray tracing underwater positioning algorithm considering incident beam angle[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(12): 1535−1542.
|
[21] |
陆秀平, 边少锋, 黄谟涛, 等. 常梯度声线跟踪中平均声速的改进算法[J]. 武汉大学学报: 信息科学版, 2012, 37(5): 590−593.
Lu Xiuping, Bian Shaofeng, Huang Motao, et al. An improved method for calculating average sound speed in constant gradient sound ray tracing technology[J]. Geomatics and Information Science of Wuhan University, 2012, 37(5): 590−593.
|
[22] |
Mary M, William M. An acoustic navigation system[R]. WHOI Technical Reports, Department of Ocean Engineering, Massachusetts, US, 1974.
|
[23] |
孙革. 多波束测深系统声速校正方法研究及其应用[D]. 青岛: 中国海洋大学, 2007: 45-68.
Sun Ge. This is the application and study on the method of adjusting the sound velocity of the multi-beam bathymetryic system[D]. Qingdao: Ocean University of China, 2007: 45−68.
|
[24] |
赵建虎, 刘经南. 多波束测深及图像数据处理[M]. 武汉: 武汉大学出版社, 2008.
Zhao Jianhu, Liu Jingnan. Multi-Beam Sounding and Image Data Processing[M]. Wuhan: Wuhan University Press, 2008.
|
[25] |
Geng Xueyi, Zielinski A. Precise multibeam acoustic bathymetry[J]. Marine Geodesy, 1999, 22(3): 157−167. doi: 10.1080/014904199273434
|
[26] |
吴德明. 一种用于声线修正的迭代法[J]. 声学学报, 1992, 17(2): 104−110.
Wu Deming. An iteration method for correcting the located coordinates of an underwater target[J]. Acta Acustica, 1992, 17(2): 104−110.
|
[27] |
Sun Dajun, Li Haipeng, Zheng Cuie, et al. Sound velocity correction based on effective sound velocity for underwater acoustic positioning systems[J]. Applied Acoustics, 2019, 151: 55−62. doi: 10.1016/j.apacoust.2019.02.027
|
[28] |
Yang Fanlin, Lu Xiushan, Li Jiabiao, et al. Precise positioning of underwater static objects without sound speed profile[J]. Marine Geodesy, 2011, 34(2): 138−151. doi: 10.1080/01490419.2010.518501
|
[29] |
王振杰, 李圣雪, 聂志喜, 等. 水声定位中一种大入射角声线跟踪方法[J]. 武汉大学学报: 信息科学版, 2016, 41(10): 1404−1408.
Wang Zhenjie, Li Shengxue, Nie Zhixi, et al. A large incidence angle ray-tracing method for underwater acoustic positioning[J]. Geomatics and Information Science of Wuhan University, 2016, 41(10): 1404−1408.
|
[30] |
Xin Mingzhen, Yang Fanlin, Wang Faxing, et al. A TOA/AOA underwater acoustic positioning system based on the equivalent sound speed[J]. Journal of Navigation, 2018, 71(6): 1431−1440. doi: 10.1017/S037346331800036X
|
[31] |
辛明真. GNSS-A水下定位与导航关键技术研究[D]. 青岛: 山东科技大学, 2020: 32-50.
Xin Mingzhen. Research on key technologies of GNSS-A underwater positioning and navigation[D]. Qingdao: Shandong University of Science and Technology, 2020: 32−50.
|
[32] |
梁国龙, 张毅锋, 付进. 利用夹角几何关系的超短基线定位方法[J]. 哈尔滨工程大学学报, 2019, 40(8): 1474−1479.
Liang Guolong, Zhang Yifeng, Fu Jin. Angle-based underwater source localization for USBL[J]. Journal of Harbin Engineering University, 2019, 40(8): 1474−1479.
|
[33] |
赵培玉, 吴素文, 冯大光, 等. 超越方程的数值计算方法与收敛速度分析[J]. 长江大学学报(自然科学版)理工, 2012, 9(5): 1−2, 5.
Zhao Peiyu, Wu Suwen, Feng Daguang, et al. Analysis of numerical calculation method and convergence rate of transcendental equation[J]. Journal of Yangtze University (Natural Science Edition) Science & Engineering, 2012, 9(5): 1−2, 5.
|