Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 45 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
Zhou Xuan,Su Jie. Effect of liquid precipitation and surface air temperature on the early melt onset of Arctic sea ice[J]. Haiyang Xuebao,2023, 45(9):10–24 doi: 10.12284/hyxb2023119
Citation: Zhou Xuan,Su Jie. Effect of liquid precipitation and surface air temperature on the early melt onset of Arctic sea ice[J]. Haiyang Xuebao,2023, 45(9):10–24 doi: 10.12284/hyxb2023119

Effect of liquid precipitation and surface air temperature on the early melt onset of Arctic sea ice

doi: 10.12284/hyxb2023119
  • Received Date: 2023-01-20
  • Rev Recd Date: 2023-05-24
  • Available Online: 2023-09-07
  • Publish Date: 2023-09-30
  • Early melt onset (EMO) is a crucial time index for sea ice melting and has a significant impact on the thermal balance of sea ice. In this paper, EMO remote sensing, ERA5 reanalysis, and sea ice concentration data have been used to reveal the relative contribution of surface air temperature and liquid precipitation. Our research indicates that, the most significant advancement of EMO is observed in the southern Atlantic sector among the five study sea areas from 1979−2021, with the rate of −3.3 d/(10 a). For the atmospheric factors affecting EMO, surface air temperature has a considerable correlation period lasting 1−2 months with EMO in all Arctic sea areas. In addition, surface air temperature in the southern Pacific sector and northern and southern Atlantic sectors have a longer duration and stronger correlation with EMO than liquid precipitation. However, for the northern Pacific sector and the central Arctic, liquid precipitation has a higher contribution only in the 2−3 weeks prior to EMO. For the northern Pacific sector, atmospheric circulation provides strong water vapor transport channel extends into this sea area, increasing saturated water vapor in the lower troposphere. Meanwhile, the trend of the 500 hPa potential height shows a three-wave strengthening atmospheric circulation structure around the pole, allowing meridional heat exchange and enhancing the vertical gradient of specific humidity, which promotes the advancement of EMO. For the central Arctic, in years when EMO is advanced, the liquid precipitation is 33% higher than climatology. Additionally, not only the Pacific water vapor transport in the climatology is enhanced, but also the converges with water vapor channel over Eurasia continent, contributing to the formation of cyclonic water vapor transport mode in the eastern Arctic, providing conditions for the advancement of EMO.
  • loading
  • [1]
    Cavalieri D J, Parkinson C L. Arctic sea ice variability and trends, 1979–2010[J]. The Cryosphere, 2012, 6(4): 881−889. doi: 10.5194/tc-6-881-2012
    [2]
    Persson P O G. Onset and end of the summer melt season over sea ice: thermal structure and surface energy perspective from SHEBA[J]. Climate Dynamics, 2012, 39(6): 1349−1371. doi: 10.1007/s00382-011-1196-9
    [3]
    Kwok R. Arctic sea ice thickness, volume, and multiyear ice coverage: losses and coupled variability (1958–2018)[J]. Environmental Research Letters, 2018, 13(10): 105005. doi: 10.1088/1748-9326/aae3ec
    [4]
    Horvath S, Stroeve J, Rajagopalan B, et al. Arctic sea ice melt onset favored by an atmospheric pressure pattern reminiscent of the North American-Eurasian Arctic pattern[J]. Climate Dynamics, 2021, 57(7/8): 1771−1787.
    [5]
    Perovich D K, Polashenski C. Albedo evolution of seasonal Arctic sea ice[J]. Geophysical Research Letters, 2012, 39(8): L08501.
    [6]
    韩微, 效存德, 窦挺峰, 等. 北极地区春季降水呈现固态向液态转变的态势[J]. 科学通报, 2018, 63(12): 1154−1162. doi: 10.1360/N972018-00088

    Han Wei, Xiao Cunde, Dou Tingfeng, et al. Arctic has been going through a transition from solid precipitation to liquid precipitation in spring[J]. Chinese Science Bulletin, 2018, 63(12): 1154−1162. doi: 10.1360/N972018-00088
    [7]
    Mahmud M S, Howell S E L, Geldsetzer T, et al. Detection of melt onset over the northern Canadian Arctic Archipelago sea ice from RADARSAT, 1997–2014[J]. Remote Sensing of Environment, 2016, 178: 59−69. doi: 10.1016/j.rse.2016.03.003
    [8]
    Meier W N, Hovelsrud G K, van Oort B E H, et al. Arctic sea ice in transformation: A review of recent observed changes and impacts on biology and human activity[J]. Reviews of Geophysics, 2014, 52(3): 185−217. doi: 10.1002/2013RG000431
    [9]
    Markus T, Stroeve J C, Miller J. Recent changes in Arctic sea ice melt onset, freezeup, and melt season length[J]. Journal of Geophysical Research: Oceans, 2009, 114(C12): C12024. doi: 10.1029/2009JC005436
    [10]
    Stroeve J C, Markus T, Boisvert L, et al. Changes in Arctic melt season and implications for sea ice loss[J]. Geophysical Research Letters, 2014, 41(4): 1216−1225. doi: 10.1002/2013GL058951
    [11]
    Mortin J, Svensson G, Graversen R G, et al. Melt onset over Arctic sea ice controlled by atmospheric moisture transport[J]. Geophysical Research Letters, 2016, 43(12): 6636−6642. doi: 10.1002/2016GL069330
    [12]
    Liang H J, Su J. Variability in sea ice melt onset in the arctic northeast passage: seesaw of the Laptev Sea and the east Siberian Sea[J]. Journal of Geophysical Research: Oceans, 2021, 126(10): e2020JC016985. doi: 10.1029/2020JC016985
    [13]
    Bliss A C, Steele M, Peng G, et al. Regional variability of Arctic sea ice seasonal change climate indicators from a passive microwave climate data record[J]. Environmental Research Letters, 2019, 14(4): 045003. doi: 10.1088/1748-9326/aafb84
    [14]
    Kay J E, Gettelman A. Cloud influence on and response to seasonal Arctic sea ice loss[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D18): D18204. doi: 10.1029/2009JD011773
    [15]
    Huang Y Y, Dong X Q, Xi B K, et al. A survey of the atmospheric physical processes key to the onset of Arctic sea ice melt in spring[J]. Climate Dynamics, 2019, 52(7/8): 4907−4922.
    [16]
    Pavlova O, Pavlov V, Gerland S. The impact of winds and sea surface temperatures on the Barents Sea ice extent, a statistical approach[J]. Journal of Marine Systems, 2014, 130: 248−255. doi: 10.1016/j.jmarsys.2013.02.011
    [17]
    Serreze M C, Barrett A P, Cassano J J. Circulation and surface controls on the lower tropospheric air temperature field of the Arctic[J]. Journal of Geophysical Research: Atmospheres, 2011, 116(D7): D07104.
    [18]
    Bintanja R, Selten F M. Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat[J]. Nature, 2014, 509(7501): 479−482. doi: 10.1038/nature13259
    [19]
    McCrystall M R, Stroeve J, Serreze M, et al. New climate models reveal faster and larger increases in Arctic precipitation than previously projected[J]. Nature Communications, 2021, 12(1): 6765. doi: 10.1038/s41467-021-27031-y
    [20]
    Dou Tingfeng, Xiao Cunde, Liu Jiping, et al. Trends and spatial variation in rain-on-snow events over the Arctic Ocean during the early melt season[J]. The Cryosphere, 2021, 15(2): 883−895. doi: 10.5194/tc-15-883-2021
    [21]
    Oltmanns M, Straneo F, Tedesco M. Increased Greenland melt triggered by large-scale, year-round cyclonic moisture intrusions[J]. The Cryosphere, 2019, 13(3): 815−825. doi: 10.5194/tc-13-815-2019
    [22]
    Xu M, Yang Q H, Hu X M, et al. Record-breaking rain falls at Greenland summit controlled by warm moist-air intrusion[J]. Environmental Research Letters, 2022, 17(4): 044061. doi: 10.1088/1748-9326/ac60d8
    [23]
    Dou Tingfeng, Xiao Cunde, Liu Jiping, et al. A key factor initiating surface ablation of Arctic sea ice: earlier and increasing liquid precipitation[J]. The Cryosphere, 2019, 13(4): 1233−1246. doi: 10.5194/tc-13-1233-2019
    [24]
    Thompson D W J, Wallace J M. The Arctic oscillation signature in the wintertime geopotential height and temperature fields[J]. Geophysical Research Letters, 1998, 25(9): 1297−1300. doi: 10.1029/98GL00950
    [25]
    Drobot S D, Anderson M R. An improved method for determining snowmelt onset dates over Arctic sea ice using scanning multichannel microwave radiometer and Special Sensor Microwave/Imager data[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D20): 24033−24049. doi: 10.1029/2000JD000171
    [26]
    Cox C J, Stone R S, Douglas D C, et al. The Aleutian low-Beaufort sea anticyclone: a climate index correlated with the timing of springtime melt in the Pacific Arctic cryosphere[J]. Geophysical Research Letters, 2019, 46(13): 7464−7473. doi: 10.1029/2019GL083306
    [27]
    纪旭鹏, 赵进平. 北极中央区海冰密集度与云量相关性分析[J]. 海洋学报, 2015, 37(11): 92−104.

    Ji Xupeng, Zhao Jinping. Analysis of correlation between sea ice concentration and cloudiness in the central Arctic[J]. Haiyang Xuebao, 2015, 37(11): 92−104.
    [28]
    Wei Jianfen, Su Jie. Mechanism of an abrupt decrease in sea-ice cover in the pacific sector of the arctic during the late 1980s[J]. Atmosphere-Ocean, 2014, 52(5): 434−445. doi: 10.1080/07055900.2014.970505
    [29]
    Eastwood S, Lavergne T, Tonboe R, et al. Algorithm theoretical basis document for the OSI SAF global sea ice concentration climate data record[EB/OL]. [2023−01−01]. https://osisaf-hl.met.no/sites/osisaf-hl/files/baseline_document/osisaf_cdop3_ss2_atbd_sea-ice-conc-climate-data-ecord_v1p2.pdf (last access: 4 September 2023), 2016.
    [30]
    Pedersen R A, Cvijanovic I, Langen P L, et al. The impact of regional arctic sea ice loss on atmospheric circulation and the NAO[J]. Journal of Climate, 2016, 29(2): 889−902. doi: 10.1175/JCLI-D-15-0315.1
    [31]
    Bland J M, Bland D G. Statistics notes: One and two sided tests of significance[J]. BMJ, 1994, 309: 248. doi: 10.1136/bmj.309.6949.248
    [32]
    Babb D G, Galley R J, Asplin M G, et al. Multiyear sea ice export through the Bering Strait during winter 2011–2012[J]. Journal of Geophysical Research: Oceans, 2013, 118(10): 5489−5503. doi: 10.1002/jgrc.20383
    [33]
    Ferrari C P, Dommergue A, Boutron C F, et al. Profiles of Mercury in the snow pack at Station Nord, Greenland shortly after polar sunrise[J]. Geophysical Research Letters, 2004, 31(3): L03401.
    [34]
    Spielhagen R F, Werner K, Sørensen S A, et al. Enhanced modern heat transfer to the arctic by warm atlantic water[J]. Science, 2011, 331(6016): 450−453. doi: 10.1126/science.1197397
    [35]
    Liu Zheng, Schweiger A. Synoptic conditions, clouds, and sea ice melt onset in the Beaufort and Chukchi seasonal ice zone[J]. Journal of Climate, 2017, 30(17): 6999−7016. doi: 10.1175/JCLI-D-16-0887.1
    [36]
    Francis D, Fonseca R, Nelli N, et al. Atmospheric rivers drive exceptional Saharan dust transport towards Europe[J]. Atmospheric Research, 2022, 266: 105959. doi: 10.1016/j.atmosres.2021.105959
    [37]
    Xu Daohuan, Du Ling, Ma Jingkai, et al. Pathways of meridional atmospheric moisture transport in the central Arctic[J]. Acta Oceanologica Sinica, 2020, 39(5): 55−64. doi: 10.1007/s13131-020-1598-9
    [38]
    郝光华, 苏洁, 黄菲. 北极冬季季节性海冰双模态特征分析[J]. 海洋学报, 2015, 37(11): 11−22.

    Hao Guanghua, Su Jie, Huang Fei. Analysis of the dual-mode feature of Arctic seasonal sea ice[J]. Haiyang Xuebao, 2015, 37(11): 11−22.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article views (360) PDF downloads(67) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return