Citation: | Han Wantong,Xia Ruibin,Luo Yiyong, et al. Sources of local dense shelf water near the Cape Darnley fast ice in Prydz Bay, Antarctica[J]. Haiyang Xuebao,2023, 45(9):45–57 doi: 10.12284/hyxb2023116 |
[1] |
Massom R A, Hill K L, Lytle V I, et al. Effects of regional fast-ice and iceberg distributions on the behaviour of the Mertz Glacier polynya, East Antarctica[J]. Annals of Glaciology, 2001, 33: 391−398. doi: 10.3189/172756401781818518
|
[2] |
Cheng Bin, Vihma T, Zhang Zhanhai, et al. Snow and sea ice thermodynamics in the Arctic: model validation and sensitivity study against SHEBA data[J]. Chinese Journal of Polar Science, 2008, 19(2): 108−122.
|
[3] |
Giles A B, Massom R A, Lytle V I. Fast-ice distribution in East Antarctica during 1997 and 1999 determined using RADARSAT data[J]. Journal of Geophysical Research: Oceans, 2008, 113(C2): C02S14.
|
[4] |
Price D, Rack W, Langhorne P J, et al. The sub-ice platelet layer and its influence on freeboard to thickness conversion of Antarctic sea ice[J]. The Cryosphere, 2014, 8(3): 1031−1039. doi: 10.5194/tc-8-1031-2014
|
[5] |
赵杰臣, 杨清华, 程斌, 等. 基于温度链浮标获取南极普里兹湾积雪和固定冰厚度的研究[J]. 海洋学报, 2017, 39(11): 115−127.
Zhao Jiechen, Yang Qinghua, Cheng Bin, et al. Snow and land-fast sea ice thickness derived from thermistor chain buoy in the Prydz Bay, Antarctic[J]. Haiyang Xuebao, 2017, 39(11): 115−127.
|
[6] |
Hunke E C, Lipscomb W H, Turner A K. Sea-ice models for climate study: retrospective and new directions[J]. Journal of Glaciology, 2010, 56(200): 1162−1172. doi: 10.3189/002214311796406095
|
[7] |
Fraser A D, Massom R A, Michael K J. Generation of high-resolution East Antarctic landfast sea-ice maps from cloud-free MODIS satellite composite imagery[J]. Remote Sensing of Environment, 2010, 114(12): 2888−2896. doi: 10.1016/j.rse.2010.07.006
|
[8] |
Nihashi S, Ohshima K I. Circumpolar mapping of Antarctic coastal polynyas and landfast sea ice: relationship and variability[J]. Journal of Climate, 2015, 28(9): 3650−3670. doi: 10.1175/JCLI-D-14-00369.1
|
[9] |
Heil P, Allison I, Lytle V I. Seasonal and interannual variations of the oceanic heat flux under a landfast Antarctic sea ice cover[J]. Journal of Geophysical Research: Oceans, 1996, 101(C11): 25741−25752. doi: 10.1029/96JC01921
|
[10] |
Mahoney A, Eicken H, Gaylord A G, et al. Alaska landfast sea ice: links with bathymetry and atmospheric circulation[J]. Journal of Geophysical Research: Oceans, 2007, 112(C2): C02001.
|
[11] |
Murphy E J, Clarke A, Symon C, et al. Temporal variation in Antarctic sea-ice: analysis of a long term fast-ice record from the South Orkney Islands[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 1995, 42(7): 1045−1062. doi: 10.1016/0967-0637(95)00057-D
|
[12] |
Marshall J, Speer K. Closure of the meridional overturning circulation through Southern Ocean upwelling[J]. Nature Geoscience, 2012, 5(3): 171−180. doi: 10.1038/ngeo1391
|
[13] |
Tamura T, Ohshima K I, Nihashi S. Mapping of sea ice production for Antarctic coastal polynyas[J]. Geophysical Research Letters, 2008, 35(7): L07606.
|
[14] |
Young N W, Turner D, Hyland G, et al. Near-coastal iceberg distributions in East Antarctica, 50°−145°E[J]. Annals of Glaciology, 1998, 27: 68−74. doi: 10.3189/1998AoG27-1-68-74
|
[15] |
Enomoto H, Nishio F, Warashina H, et al. Satellite observation of melting and break-up of fast ice in Lutzow-Holm Bay, East Antarctica[J]. Polar Meteorology and Glaciology, 2002, 16: 1−14.
|
[16] |
Heil P. Atmospheric conditions and fast ice at Davis, East Antarctica: a case study[J]. Journal of Geophysical Research: Oceans, 2006, 111(C5): C05009.
|
[17] |
Kim S, Saenz B, Scanniello J, et al. Local climatology of fast ice in McMurdo Sound, Antarctica[J]. Antarctic Science, 2018, 30(2): 125−142. doi: 10.1017/S0954102017000578
|
[18] |
Lei Ruibo, Li Zhijun, Cheng Bin, et al. Annual cycle of landfast sea ice in Prydz Bay, East Antarctica[J]. Journal of Geophysical Research: Oceans, 2010, 115(C2): C02006.
|
[19] |
Ushio S. Factors affecting fast-ice break-up frequency in Lützow-Holm Bay, Antarctica[J]. Annals of Glaciology, 2006, 44: 177−182. doi: 10.3189/172756406781811835
|
[20] |
Wongpan P, Hughes K G, Langhorne P J, et al. Brine convection, temperature fluctuations, and permeability in winter antarctic land-fast sea ice[J]. Journal of Geophysical Research: Oceans, 2018, 123(1): 216−230. doi: 10.1002/2017JC012999
|
[21] |
雷瑞波, 李志军, 窦银科, 等. 南极中山站附近固定冰生消过程观测[J]. 水科学进展, 2010, 21(5): 708−712.
Lei Ruibo, Li Zhijun, Dou Yinke, et al. Observations of the growth and decay processes of fast ice around Zhongshan Station in Antarctica[J]. Advances in Water Science, 2010, 21(5): 708−712.
|
[22] |
雷瑞波, 李志军, 张占海, 等. 南极中山站附近海域固定冰的夏季变化[J]. 极地研究, 2007, 19(4): 275−284.
Lei Ruibo, Li Zhijun, Zhang Zhanhai, et al. Summer fast-ice evolution off Zhongshan Station, Antarctica[J]. Chinese Journal of Polar Research, 2007, 19(4): 275−284.
|
[23] |
窦银科, 常晓敏, 敦卓, 等. 电容感应式冰厚监测系统在南极海冰监测中的应用[J]. 数学的实践与认识, 2014, 44(4): 197−204. doi: 10.3969/j.issn.1000-0984.2014.04.031
Dou Yinke, Chang Xiaomin, Dun Zhuo, et al. Monitoring and application of the system of capacitive sensing for ice thickness in the Antarctic sea ice[J]. Mathematics in Practice and Theory, 2014, 44(4): 197−204. doi: 10.3969/j.issn.1000-0984.2014.04.031
|
[24] |
杨清华, 刘骥平, 孙启振, 等. 2010年春季南极固定冰反照率变化特征及其影响因子[J]. 地球物理学报, 2013, 56(7): 2177−2184. doi: 10.6038/cjg20130705
Yang Qinghua, Liu Jiping, Sun Qizhen, et al. Surface albedo variation and its influencing factors over costal fast ice around Zhongshan Station, Antarctica in austral spring of 2010[J]. Chinese Journal of Geophysics, 2013, 56(7): 2177−2184. doi: 10.6038/cjg20130705
|
[25] |
赵杰臣, 郝光华, 李杰, 等. 南极中山站海冰综合观测系统的建设[J]. 海洋预报, 2018, 35(5): 41−52. doi: 10.11737/j.issn.1003-0239.2018.05.006
Zhao Jiechen, Hao Guanghua, Li Jie, et al. Construction of integrated sea ice observation system at Antarctic Zhongshan Station[J]. Marine Forecasts, 2018, 35(5): 41−52. doi: 10.11737/j.issn.1003-0239.2018.05.006
|
[26] |
Li Xinqing, Shokr M, Hui Fengming, et al. The spatio-temporal patterns of landfast ice in Antarctica during 2006–2011 and 2016–2017 using high-resolution SAR imagery[J]. Remote Sensing of Environment, 2020, 242: 111736. doi: 10.1016/j.rse.2020.111736
|
[27] |
Zhao Jiechen, Cheng Jingjing, Tian Zhongxiang, et al. Snow and ice thicknesses derived from Fast Ice Prediction System Version 2.0 (FIPS V2.0) in Prydz Bay, East Antarctica: comparison with in-situ observations[J]. Big Earth Data, 2022, 6(4): 492−503. doi: 10.1080/20964471.2021.1981196
|
[28] |
Fraser A D, Massom R A, Michael K J, et al. East Antarctic landfast sea ice distribution and variability, 2000–08[J]. Journal of Climate, 2012, 25(4): 1137−1156. doi: 10.1175/JCLI-D-10-05032.1
|
[29] |
Fraser A D, Ohshima K I, Nihashi S, et al. Landfast Sea Ice Extent Time-Series, from March 2000 to March 2014[EB/OL]. [2022−11−01]. http://doi.org/10.4225/15/58eedb8f99dbc
|
[30] |
Fraser A D, Ohshima K I, Nihashi S, et al. Landfast ice controls on sea-ice production in the Cape Darnley Polynya: a case study[J]. Remote Sensing of Environment, 2019, 233: 111315. doi: 10.1016/j.rse.2019.111315
|
[31] |
Petty A A, Feltham D L, Holland P R. Impact of atmospheric forcing on Antarctic continental shelf water masses[J]. Journal of Physical Oceanography, 2013, 43(5): 920−940. doi: 10.1175/JPO-D-12-0172.1
|
[32] |
Silvano A, Rintoul S R, Peña-Molino B, et al. Freshening by glacial meltwater enhances melting of ice shelves and reduces formation of Antarctic Bottom Water[J]. Science Advances, 2018, 4(4): eaap9467. doi: 10.1126/sciadv.aap9467
|
[33] |
Ohshima K I, Fukamachi Y, Williams G D, et al. Antarctic Bottom Water production by intense sea-ice formation in the Cape Darnley polynya[J]. Nature Geoscience, 2013, 6(3): 235−240. doi: 10.1038/ngeo1738
|
[34] |
Williams G D, Herraiz-Borreguero L, Roquet F, et al. The suppression of Antarctic bottom water formation by melting ice shelves in Prydz Bay[J]. Nature Communications, 2016, 7(1): 12577. doi: 10.1038/ncomms12577
|
[35] |
Johnson G C. Quantifying Antarctic bottom water and North Atlantic deep water volumes[J]. Journal of Geophysical Research: Oceans, 2008, 113(C5): C05027.
|
[36] |
Orsi A H, Johnson G C, Bullister J L. Circulation, mixing, and production of Antarctic Bottom Water[J]. Progress in Oceanography, 1999, 43(1): 55−109. doi: 10.1016/S0079-6611(99)00004-X
|
[37] |
Portela E, Rintoul S R, Bestley S, et al. Seasonal transformation and spatial variability of water masses within MacKenzie polynya, Prydz Bay[J]. Journal of Geophysical Research: Oceans, 2021, 126(12): e2021JC017748.
|
[38] |
Roquet F, Williams G, Hindell M, et al. A Southern Indian Ocean database of hydrographic profiles obtained with instrumented elephant seals[J]. Scientific Data, 2014, 1: 140028.
|
[39] |
Hooker S K, Boyd I L. Salinity sensors on seals: use of marine predators to carry CTD data loggers[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2003, 50(7): 927−939. doi: 10.1016/S0967-0637(03)00055-4
|
[40] |
Lake R A, Lewis E L. Salt rejection by sea ice during growth[J]. Journal of Geophysical Research, 1970, 75(3): 583−597. doi: 10.1029/JC075i003p00583
|
[41] |
韩雨欣. 搁浅冰山对南极普里兹湾环流及海冰影响的数值[D]. 青岛: 中国海洋大学, 2022.
Han Yuxin. Simulating the effects of grounding giant icebergs on circulation and sea ice in Prydz Bay using a coupled seaice-ocean numerical model[D]. Qingdao: Ocean University of China, 2022.
|
[42] |
程瑶瑶, 史久新, 郑少军. 南极麦肯齐湾冰间湖的时空变化及主要影响因素分析[J]. 中国海洋大学学报, 2012, 42(7/8): 1−9.
Cheng Yaoyao, Shi Jiuxin, Zheng Shaojun. Temporal and spatial variation of the Mackenzie Bay polynya, Antarctica and its main impact factors[J]. Periodical of Ocean University of China, 2012, 42(7/8): 1−9.
|
[43] |
林丽娜, 陈红霞, 刘娜. 普里兹湾及邻近海域多航次水文特征比较分析[J]. 海洋科学进展, 2015, 33(4): 460−470. doi: 10.3969/j.issn.1671-6647.2015.04.004
Lin Lina, Chen Hongxia, Liu Na. A comparative analysis on hydrographic features during several cruises in the region of Prydz Bay, Antarctic[J]. Advances in Marine Science, 2015, 33(4): 460−470. doi: 10.3969/j.issn.1671-6647.2015.04.004
|