Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 45 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
Wei Xiaowei,Dong Changming,Xia Changshui, et al. An assessment of North Pacific interdecadal climate change simulations using the FIO-ESM v2.0[J]. Haiyang Xuebao,2023, 45(9):25–44 doi: 10.12284/hyxb2023112
Citation: Wei Xiaowei,Dong Changming,Xia Changshui, et al. An assessment of North Pacific interdecadal climate change simulations using the FIO-ESM v2.0[J]. Haiyang Xuebao,2023, 45(9):25–44 doi: 10.12284/hyxb2023112

An assessment of North Pacific interdecadal climate change simulations using the FIO-ESM v2.0

doi: 10.12284/hyxb2023112
  • Received Date: 2021-10-16
  • Rev Recd Date: 2023-04-17
  • Available Online: 2023-09-04
  • Publish Date: 2023-09-30
  • Numerical simulation play an important role in studying long-term climate change. For a long time, it has meted great challenges in characterizing the phase transitions of interdecadal climate changes like Pacific Decadal Oscillation (PDO). This study evaluates 145-year (1870–2014) historical PDO simulation results produced by the First Institute of Oceanography’s Earth System Model Version 2 (FIO-ESM v2.0) of Ministry of Natural Resources, in a comparison with reanalysis datasets and two other earth system model results. Results indicate that the FIO-ESM v2.0 can recreate the spatial modal distribution characteristics of the PDO from the historical period. The model’s PDO index has a period of 10 to 30 years and can describe the phase transition characteristics that resembles reanalysis datasets after 1960. Research shows that the FIO-ESM v2.0 can describe the phase transition features of PDO well. In addition, the model performance to simulate atmospheric circulation modes and relationship with PDO, as well as the possible mechanism for the model to simulate PDO are also discussed. The PDO of the model is related to the Aleutian Mode of atmospheric circulation. Further analysis shows that advection and heat flux are the main factors affecting the amplitude of SST anomalies in key decadal area, and the Rossby wave westward time may be the key factor affecting the phase transition of PDO.
  • loading
  • [1]
    Mantua N J, Hare S R, Zhang Y, et al. A Pacific interdecadal climate oscillation with impacts on salmon production[J]. Bulletin of the American Meteorological Society, 1997, 78(6): 1069−1080. doi: 10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2
    [2]
    Minobe S. A 50−70 year climatic oscillation over the North Pacific and North America[J]. Geophysical Research Letters, 1997, 24(6): 683−686. doi: 10.1029/97GL00504
    [3]
    Ware D M, Thomson R E. Interannual to multidecadal timescale climate variations in the Northeast Pacific[J]. Journal of Climate, 2000, 13(18): 3209−3220. doi: 10.1175/1520-0442(2000)013<3209:ITMTCV>2.0.CO;2
    [4]
    Hare S R. Low frequency climate variability and salmon production[D]. Washington: University of Washington, 1996.
    [5]
    朱益民, 杨修群. 太平洋年代际振荡与中国气候变率的联系[J]. 气象学报, 2003, 61(6): 641−654.

    Zhu Yimin, Yang Xiuqun. Relationships between Pacific Decadal Oscillation (PDO) and climate variabilities in China[J]. Acta Meteorologica Sinica, 2003, 61(6): 641−654.
    [6]
    Yu Wei, Chen Xinjun, Yi Qian, et al. A review of interaction between neon flying squid (Ommastrephes bartramii) and oceanographic variability in the North Pacific Ocean[J]. Journal of Ocean University of China, 2015, 14(4): 739−748. doi: 10.1007/s11802-015-2562-8
    [7]
    Easterbrook D J. Using patterns of recurring climate cycles to predict future climate changes[M]//Easterbrook D J. Evidence-Based Climate Science: Data Opposing CO2 Emissions as the Primary Source of Global Warming. 2nd ed. Amsterdam: Elsevier, 2016: 395−411.
    [8]
    Joh Y, Di Lorenzo E. Increasing coupling between NPGO and PDO leads to prolonged marine heatwaves in the Northeast Pacific[J]. Geophysical Research Letters, 2017, 44(22): 11663−11671. doi: 10.1002/2017GL075930
    [9]
    Kundzewicz Z W, Huang Jinlong, Pinskwar I, et al. Climate variability and floods in China—a review[J]. Earth-Science Reviews, 2020, 211: 103434. doi: 10.1016/j.earscirev.2020.103434
    [10]
    Gershunov A, Barnett T P. Interdecadal modulation of ENSO teleconnections[J]. Bulletin of the American Meteorological Society, 1998, 79(12): 2715−2726. doi: 10.1175/1520-0477(1998)079<2715:IMOET>2.0.CO;2
    [11]
    Birk K, Lupo A R, Guinan P, et al. The interannual variability of midwestern temperatures and precipitation as related to the ENSO and PDO[J]. Atmosfera, 2010, 23(2): 95−128.
    [12]
    Frankignoul C, Hasselmann K. Stochastic climate models, Part II Application to sea-surface temperature anomalies and thermocline variability[J]. Tellus, 1977, 29(4): 289−305. doi: 10.3402/tellusa.v29i4.11362
    [13]
    Frankignoul C. A cautionary note on the use of statistical atmospheric models in the middle latitudes: comments on “Decadal variability in the North Pacific as simulated by a hybrid coupled model”[J]. Journal of Climate, 1999, 12(6): 1871−1872. doi: 10.1175/1520-0442(1999)012<1871:ACNOTU>2.0.CO;2
    [14]
    Trenberth K E, Branstator G W, Karoly D, et al. Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures[J]. Journal of Geophysical Research, 1998, 103(C7): 14291−14324. doi: 10.1029/97JC01444
    [15]
    Alexander M A, Bladé I, Newman M, et al. The atmospheric bridge: the influence of ENSO teleconnections on air-sea interaction over the global oceans[J]. Journal of Climate, 2002, 15(16): 2205−2231. doi: 10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2
    [16]
    Clarke A J, Van Gorder S. On ENSO coastal currents and sea levels[J]. Journal of Physical Oceanography, 1994, 24(3): 661−680. doi: 10.1175/1520-0485(1994)024<0661:OECCAS>2.0.CO;2
    [17]
    Miller A J, White W B, Cayan D R. North Pacific thermocline variations on ENSO timescales[J]. Journal of Physical Oceanography, 1997, 27(9): 2023−2039. doi: 10.1175/1520-0485(1997)027<2023:NPTVOE>2.0.CO;2
    [18]
    Alexander M. Extratropical air-sea interaction, sea surface temperature variability, and the Pacific decadal oscillation[M]//Sun Dezheng, Bryan F. Climate Dynamics: Why Does Climate Vary. Washington: American Geophysical Union, 2010: 123−148.
    [19]
    Namias J, Born R M. Further studies of temporal coherence in North Pacific sea surface temperatures[J]. Journal of Geophysical Research, 1974, 79(6): 797−798. doi: 10.1029/JC079i006p00797
    [20]
    Alexander M A, Deser C. A mechanism for the recurrence of wintertime midlatitude SST anomalies[J]. Journal of Physical Oceanography, 1995, 25(1): 122−137. doi: 10.1175/1520-0485(1995)025<0122:AMFTRO>2.0.CO;2
    [21]
    Schwartz R E, Gershunov A, Iacobellis S F, et al. North American west coast summer low cloudiness: broadscale variability associated with sea surface temperature[J]. Geophysical Research Letters, 2014, 41(9): 3307−3314. doi: 10.1002/2014GL059825
    [22]
    Latif M, Barnett T P. Decadal climate variability over the North Pacific and North America: dynamics and predictability[J]. Journal of Climate, 1996, 9(10): 2407−2423. doi: 10.1175/1520-0442(1996)009<2407:DCVOTN>2.0.CO;2
    [23]
    Miller A J, Schneider N. Interdecadal climate regime dynamics in the North Pacific Ocean: theories, observations and ecosystem impacts[J]. Progress in Oceanography, 2000, 47(2/4): 355−379.
    [24]
    Taguchi B, Xie Shangping, Schneider N, et al. Decadal variability of the Kuroshio Extension: observations and an eddy-resolving model hindcast[J]. Journal of Climate, 2007, 20(11): 2357−2377. doi: 10.1175/JCLI4142.1
    [25]
    Zhong Yafang, Liu Zhengyu. On the mechanism of Pacific multidecadal climate variability in CCSM3: The role of the subpolar North Pacific Ocean[J]. Journal of Physical Oceanography, 2009, 39(9): 2052−2076. doi: 10.1175/2009JPO4097.1
    [26]
    Taguchi B, Nakamura H, Nonaka M, et al. Seasonal evolutions of atmospheric response to decadal SST anomalies in the North Pacific subarctic frontal zone: observations and a coupled model simulation[J]. Journal of Climate, 2012, 25(1): 111−139. doi: 10.1175/JCLI-D-11-00046.1
    [27]
    Gu Daifang, Philander S G H. Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics[J]. Science, 1997, 275(5301): 805−807. doi: 10.1126/science.275.5301.805
    [28]
    Li Yuanlong, Wang Fan, Sun Yan. Low-frequency spiciness variations in the tropical Pacific Ocean observed during 2003−2012[J]. Geophysical Research Letters, 2012, 39(23): L23601.
    [29]
    Kleeman R, McCreary Jr J P, Klinger B A. A mechanism for generating ENSO decadal variability[J]. Geophysical Research Letters, 1999, 26(12): 1743−1746. doi: 10.1029/1999GL900352
    [30]
    Zhang Dongxiao, McPhaden M J. Decadal variability of the shallow Pacific meridional overturning circulation: relation to tropical sea surface temperatures in observations and climate change models[J]. Ocean Modelling, 2006, 15(3/4): 250−273.
    [31]
    Vimont D J, Wallace J M, Battisti D S. The seasonal footprinting mechanism in the Pacific: implications for ENSO[J]. Journal of Climate, 2003, 16(16): 2668−2675. doi: 10.1175/1520-0442(2003)016<2668:TSFMIT>2.0.CO;2
    [32]
    Landscheidt T. Trends in Pacific Decadal Oscillation subjected to solar forcing[EB/OL]. [2021−10−16]. http://www.john-daly/theodor/pdotrend.htm.
    [33]
    Hamamoto M, Yasuda I. Synchronized interdecadal variations behind regime shifts in the Pacific Decadal Oscillation[J]. Journal of Oceanography, 2021, 77(3): 383−392. doi: 10.1007/s10872-021-00592-8
    [34]
    Capotondi A, Wittenberg A T, Newman M, et al. Understanding ENSO diversity[J]. Bulletin of the American Meteorological Society, 2015, 96(6): 921−938. doi: 10.1175/BAMS-D-13-00117.1
    [35]
    L’Heureux M L, Levine A F Z, Newman M, et al. ENSO prediction[M]//McPhaden M J, Santoso A, Cai Wenju. El Niño Southern Oscillation in A Changing Climate. Hoboken: American Geophysical Union, 2020: 227−246.
    [36]
    Eyring V, Bony S, Meehl G A, et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization[J]. Geoscientific Model Development, 2016, 9(5): 1937−1958. doi: 10.5194/gmd-9-1937-2016
    [37]
    顾薇, 李崇银. IPCC AR4中海气耦合模式对中国东部夏季降水及PDO、NAO年代际变化的模拟能力分析[J]. 大气科学学报, 2010, 33(4): 401−411.

    Gu Wei, Li Chongyin. Evaluation of the IPCC AR4 climate models in simulating the interdecadal variations of the east China summer precipitation, PDO and NAO[J]. Transactions of Atmospheric Sciences, 2010, 33(4): 401−411.
    [38]
    Wang Tao, Miao Jiapeng. Twentieth-century Pacific Decadal Oscillation simulated by CMIP5 coupled models[J]. Atmospheric and Oceanic Science Letters, 2018, 11(1): 94−101. doi: 10.1080/16742834.2017.1381548
    [39]
    陈红. CMIP5耦合模式对太平洋年代际振荡的模拟与预估[J]. 大气科学, 2019, 43(4): 783−795.

    Chen Hong. Simulation and projection of the Pacific Decadal Oscillation based on CMIP5 coupled models[J]. Chinese Journal of Atmospheric Sciences, 2019, 43(4): 783−795.
    [40]
    Mochizuki T, Ishii M, Kimoto M, et al. Pacific decadal oscillation hindcasts relevant to near-term climate prediction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(5): 1833−1837.
    [41]
    Mochizuki T, Chikamoto Y, Kimoto M, et al. Decadal prediction using a recent series of MIROC global climate models[J]. Journal of the Meteorological Society of Japan, 2012, 90A: 373−383.
    [42]
    Alexander M A, Matrosova L, Penland C, et al. Forecasting Pacific SSTs: linear inverse model predictions of the PDO[J]. Journal of Climate, 2008, 21(2): 385−402. doi: 10.1175/2007JCLI1849.1
    [43]
    Wen Caihong, Xue Yan, Kumar A. Seasonal prediction of North Pacific SSTs and PDO in the NCEP CFS hindcasts[J]. Journal of Climate, 2012, 25(17): 5689−5710. doi: 10.1175/JCLI-D-11-00556.1
    [44]
    Furtado J C, Di Lorenzo E, Schneider N, et al. North Pacific decadal variability and climate change in the IPCC AR4 models[J]. Journal of Climate, 2011, 24(12): 3049−3067. doi: 10.1175/2010JCLI3584.1
    [45]
    Henley B J. Pacific decadal climate variability: indices, patterns and tropical-extratropical interactions[J]. Global and Planetary Change, 2017, 155: 42−55. doi: 10.1016/j.gloplacha.2017.06.004
    [46]
    Kim H M, Ham Y G, Scaife A A. Improvement of initialized decadal predictions over the North Pacific Ocean by systematic anomaly pattern correction[J]. Journal of Climate, 2014, 27(13): 5148−5162. doi: 10.1175/JCLI-D-13-00519.1
    [47]
    和玉君, 刘咪咪, 王斌. 年代际预测和耦合资料同化研究综述[J]. 地球物理学报, 2020, 63(1): 1−18.

    He Yujun, Liu Mimi, Wang Bin. Review on the study of decadal prediction and coupled data assimilation[J]. Chinese Journal of Geophysics, 2020, 63(1): 1−18.
    [48]
    Chen Shangfeng, Yu Bin, Wu Renguang, et al. The dominant North Pacific atmospheric circulation patterns and their relations to Pacific SSTs: historical simulations and future projections in the IPCC AR6 models[J]. Climate Dynamics, 2021, 56(3): 701−725.
    [49]
    Qiao Fangli, Yuan Yeli, Yang Yongzeng, et al. Wave-induced mixing in the upper ocean: distribution and application to a global ocean circulation model[J]. Geophysical Research Letters, 2004, 31(11): L11303.
    [50]
    Song Zhenya, Qiao Fangli, Song Yajuan. Response of the equatorial basin-wide SST to non-breaking surface wave-induced mixing in a climate model: an amendment to tropical bias[J]. Journal of Geophysical Research, 2012, 117(C11): C00J26.
    [51]
    Qiao Fangli, Song Zhenya, Bao Ying, et al. Development and evaluation of an Earth System Model with surface gravity waves[J]. Journal of Geophysical Research, 2013, 118(9): 4514−4524. doi: 10.1002/jgrc.20327
    [52]
    Liu Zhengyu. Dynamics of interdecadal climate variability: a historical perspective[J]. Journal of Climate, 2012, 25(6): 1963−1995. doi: 10.1175/2011JCLI3980.1
    [53]
    宋振亚, 鲍颖, 乔方利. FIO-ESM v2.0模式及其参与CMIP6的方案[J]. 气候变化研究进展, 2019, 15(5): 558−565.

    Song Zhenya, Bao Ying, Qiao Fangli. Introduction of FIO-ESM v2.0 and its participation plan in CMIP6 experiments[J]. Climate Change Research, 2019, 15(5): 558−565.
    [54]
    宋振亚. 耦合海浪的地球系统模式FIO-ESM[J]. 气候变化研究快报, 2020, 9(1): 26−39. doi: 10.12677/CCRL.2020.91004

    Song Zhenya. FIO-ESM: the earth system model coupled with ocean surface gravity waves[J]. Climate Change Research Letters, 2020, 9(1): 26−39. doi: 10.12677/CCRL.2020.91004
    [55]
    Bao Ying, Song Zhenya, Qiao Fangli. FIO-ESM version 2.0: model description and evaluation[J]. Journal of Geophysical Research, 2020, 125(6): e2019JC016036.
    [56]
    Zhang Yuan, Wallace J M, Battisti D S. ENSO-like Interdecadal variability: 1900−93[J]. Journal of Climate, 1997, 10(5): 1004−1020. doi: 10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2
    [57]
    Trenberth K E, Fasullo J T. An apparent hiatus in global warming?[J]. Earth’s Future, 2013, 1(1): 19−32. doi: 10.1002/2013EF000165
    [58]
    North G R, Bell T L, Cahalan R F, et al. Sampling errors in the estimation of empirical orthogonal functions[J]. Monthly Weather Review, 1982, 110(7): 699−706. doi: 10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2
    [59]
    Bond N A, Overland J E, Spillane M, et al. Recent shifts in the state of the North Pacific[J]. Geophysical Research Letters, 2003, 30(23): 2183.
    [60]
    Ceballos L I, Di Lorenzo E, Hoyos C D, et al. North Pacific Gyre Oscillation synchronizes climate fluctuations in the eastern and western boundary systems[J]. Journal of Climate, 2009, 22(19): 5163−5174. doi: 10.1175/2009JCLI2848.1
    [61]
    Rogers J C. The North Pacific oscillation[J]. Journal of Climatology, 1981, 1(1): 39−57. doi: 10.1002/joc.3370010106
    [62]
    Di Lorenzo E, Schneider N, Cobb K M, et al. North Pacific Gyre Oscillation links ocean climate and ecosystem change[J]. Geophysical Research Letters, 2008, 35(8): L08607.
    [63]
    Trenberth K E, Hurrell J W. Decadal atmosphere-ocean variations in the Pacific[J]. Climate Dynamics, 1994, 9(6): 303−319. doi: 10.1007/BF00204745
    [64]
    Newman M, Alexander M A, Ault T R, et al. The Pacific decadal oscillation, revisited[J]. Journal of Climate, 2016, 29(12): 4399−4427. doi: 10.1175/JCLI-D-15-0508.1
    [65]
    Miller A J, Cayan D R, Barnett T P, et al. The 1976−77 climate shift of the Pacific Ocean[J]. Oceanography, 1994, 7(1): 21−26. doi: 10.5670/oceanog.1994.11
    [66]
    Chhak K C, Di Lorenzo E, Schneider N, et al. Forcing of low-frequency ocean variability in the Northeast Pacific[J]. Journal of Climate, 2009, 22(5): 1255−1276. doi: 10.1175/2008JCLI2639.1
    [67]
    Smirnov D, Newman M, Alexander M A. Investigating the role of ocean-atmosphere coupling in the North Pacific Ocean[J]. Journal of Climate, 2014, 27(2): 592−606. doi: 10.1175/JCLI-D-13-00123.1
    [68]
    Alexander M A, Scott J D. The role of Ekman ocean heat transport in the Northern Hemisphere response to ENSO[J]. Journal of Climate, 2008, 21(21): 5688−5707. doi: 10.1175/2008JCLI2382.1
    [69]
    Coburn J, Pryor S C. Differential credibility of climate modes in CMIP6[J]. Journal of Climate, 2021, 34(20): 8145−8164. doi: 10.1175/JCLI-D-21-0359.1
    [70]
    Stevenson J W, Niiler P P. Upper ocean heat budget during the Hawaii-to-Tahiti shuttle experiment[J]. Journal of Physical Oceanography, 1983, 13(10): 1894−1907. doi: 10.1175/1520-0485(1983)013<1894:UOHBDT>2.0.CO;2
    [71]
    Moisan J R, Niiler P P. The seasonal heat budget of the North Pacific: net heat flux and heat storage rates (1950−1990)[J]. Journal of Physical Oceanography, 1998, 28(3): 401−421. doi: 10.1175/1520-0485(1998)028<0401:TSHBOT>2.0.CO;2
    [72]
    Kwon Y O, Deser C. North Pacific decadal variability in the community climate system model version 2[J]. Journal of Climate, 2007, 20(11): 2416−2433. doi: 10.1175/JCLI4103.1
    [73]
    Qiu Bo. Kuroshio Extension variability and forcing of the Pacific decadal oscillations: responses and potential feedback[J]. Journal of Physical Oceanography, 2003, 33(12): 2465−2482. doi: 10.1175/1520-0485(2003)033<2465:KEVAFO>2.0.CO;2
    [74]
    Chelton D B, DeSzoeke R A, Schlax M G, et al. Geographical variability of the first baroclinic Rossby radius of deformation[J]. Journal of Physical Oceanography, 1998, 28(3): 433−460. doi: 10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2
    [75]
    范海梅, 张庆华, 李丙瑞, 等. 第一斜压Rossby波在大洋传播中的调整[J]. 海洋科学进展, 2007, 25(1): 15−19.

    Fan Haimei, Zhang Qinghua, Li Bingrui, et al. Adjustment of the first baroclinic rossby wave propagating in global ocean[J]. Advances in Marine Science, 2007, 25(1): 15−19.
    [76]
    Schneider N, Miller A J, Pierce D W. Anatomy of North Pacific decadal variability[J]. Journal of Climate, 2002, 15(6): 586−605. doi: 10.1175/1520-0442(2002)015<0586:AONPDV>2.0.CO;2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)  / Tables(1)

    Article views (304) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return