Citation: | Wei Xiaowei,Dong Changming,Xia Changshui, et al. An assessment of North Pacific interdecadal climate change simulations using the FIO-ESM v2.0[J]. Haiyang Xuebao,2023, 45(9):25–44 doi: 10.12284/hyxb2023112 |
[1] |
Mantua N J, Hare S R, Zhang Y, et al. A Pacific interdecadal climate oscillation with impacts on salmon production[J]. Bulletin of the American Meteorological Society, 1997, 78(6): 1069−1080. doi: 10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2
|
[2] |
Minobe S. A 50−70 year climatic oscillation over the North Pacific and North America[J]. Geophysical Research Letters, 1997, 24(6): 683−686. doi: 10.1029/97GL00504
|
[3] |
Ware D M, Thomson R E. Interannual to multidecadal timescale climate variations in the Northeast Pacific[J]. Journal of Climate, 2000, 13(18): 3209−3220. doi: 10.1175/1520-0442(2000)013<3209:ITMTCV>2.0.CO;2
|
[4] |
Hare S R. Low frequency climate variability and salmon production[D]. Washington: University of Washington, 1996.
|
[5] |
朱益民, 杨修群. 太平洋年代际振荡与中国气候变率的联系[J]. 气象学报, 2003, 61(6): 641−654.
Zhu Yimin, Yang Xiuqun. Relationships between Pacific Decadal Oscillation (PDO) and climate variabilities in China[J]. Acta Meteorologica Sinica, 2003, 61(6): 641−654.
|
[6] |
Yu Wei, Chen Xinjun, Yi Qian, et al. A review of interaction between neon flying squid (Ommastrephes bartramii) and oceanographic variability in the North Pacific Ocean[J]. Journal of Ocean University of China, 2015, 14(4): 739−748. doi: 10.1007/s11802-015-2562-8
|
[7] |
Easterbrook D J. Using patterns of recurring climate cycles to predict future climate changes[M]//Easterbrook D J. Evidence-Based Climate Science: Data Opposing CO2 Emissions as the Primary Source of Global Warming. 2nd ed. Amsterdam: Elsevier, 2016: 395−411.
|
[8] |
Joh Y, Di Lorenzo E. Increasing coupling between NPGO and PDO leads to prolonged marine heatwaves in the Northeast Pacific[J]. Geophysical Research Letters, 2017, 44(22): 11663−11671. doi: 10.1002/2017GL075930
|
[9] |
Kundzewicz Z W, Huang Jinlong, Pinskwar I, et al. Climate variability and floods in China—a review[J]. Earth-Science Reviews, 2020, 211: 103434. doi: 10.1016/j.earscirev.2020.103434
|
[10] |
Gershunov A, Barnett T P. Interdecadal modulation of ENSO teleconnections[J]. Bulletin of the American Meteorological Society, 1998, 79(12): 2715−2726. doi: 10.1175/1520-0477(1998)079<2715:IMOET>2.0.CO;2
|
[11] |
Birk K, Lupo A R, Guinan P, et al. The interannual variability of midwestern temperatures and precipitation as related to the ENSO and PDO[J]. Atmosfera, 2010, 23(2): 95−128.
|
[12] |
Frankignoul C, Hasselmann K. Stochastic climate models, Part II Application to sea-surface temperature anomalies and thermocline variability[J]. Tellus, 1977, 29(4): 289−305. doi: 10.3402/tellusa.v29i4.11362
|
[13] |
Frankignoul C. A cautionary note on the use of statistical atmospheric models in the middle latitudes: comments on “Decadal variability in the North Pacific as simulated by a hybrid coupled model”[J]. Journal of Climate, 1999, 12(6): 1871−1872. doi: 10.1175/1520-0442(1999)012<1871:ACNOTU>2.0.CO;2
|
[14] |
Trenberth K E, Branstator G W, Karoly D, et al. Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures[J]. Journal of Geophysical Research, 1998, 103(C7): 14291−14324. doi: 10.1029/97JC01444
|
[15] |
Alexander M A, Bladé I, Newman M, et al. The atmospheric bridge: the influence of ENSO teleconnections on air-sea interaction over the global oceans[J]. Journal of Climate, 2002, 15(16): 2205−2231. doi: 10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2
|
[16] |
Clarke A J, Van Gorder S. On ENSO coastal currents and sea levels[J]. Journal of Physical Oceanography, 1994, 24(3): 661−680. doi: 10.1175/1520-0485(1994)024<0661:OECCAS>2.0.CO;2
|
[17] |
Miller A J, White W B, Cayan D R. North Pacific thermocline variations on ENSO timescales[J]. Journal of Physical Oceanography, 1997, 27(9): 2023−2039. doi: 10.1175/1520-0485(1997)027<2023:NPTVOE>2.0.CO;2
|
[18] |
Alexander M. Extratropical air-sea interaction, sea surface temperature variability, and the Pacific decadal oscillation[M]//Sun Dezheng, Bryan F. Climate Dynamics: Why Does Climate Vary. Washington: American Geophysical Union, 2010: 123−148.
|
[19] |
Namias J, Born R M. Further studies of temporal coherence in North Pacific sea surface temperatures[J]. Journal of Geophysical Research, 1974, 79(6): 797−798. doi: 10.1029/JC079i006p00797
|
[20] |
Alexander M A, Deser C. A mechanism for the recurrence of wintertime midlatitude SST anomalies[J]. Journal of Physical Oceanography, 1995, 25(1): 122−137. doi: 10.1175/1520-0485(1995)025<0122:AMFTRO>2.0.CO;2
|
[21] |
Schwartz R E, Gershunov A, Iacobellis S F, et al. North American west coast summer low cloudiness: broadscale variability associated with sea surface temperature[J]. Geophysical Research Letters, 2014, 41(9): 3307−3314. doi: 10.1002/2014GL059825
|
[22] |
Latif M, Barnett T P. Decadal climate variability over the North Pacific and North America: dynamics and predictability[J]. Journal of Climate, 1996, 9(10): 2407−2423. doi: 10.1175/1520-0442(1996)009<2407:DCVOTN>2.0.CO;2
|
[23] |
Miller A J, Schneider N. Interdecadal climate regime dynamics in the North Pacific Ocean: theories, observations and ecosystem impacts[J]. Progress in Oceanography, 2000, 47(2/4): 355−379.
|
[24] |
Taguchi B, Xie Shangping, Schneider N, et al. Decadal variability of the Kuroshio Extension: observations and an eddy-resolving model hindcast[J]. Journal of Climate, 2007, 20(11): 2357−2377. doi: 10.1175/JCLI4142.1
|
[25] |
Zhong Yafang, Liu Zhengyu. On the mechanism of Pacific multidecadal climate variability in CCSM3: The role of the subpolar North Pacific Ocean[J]. Journal of Physical Oceanography, 2009, 39(9): 2052−2076. doi: 10.1175/2009JPO4097.1
|
[26] |
Taguchi B, Nakamura H, Nonaka M, et al. Seasonal evolutions of atmospheric response to decadal SST anomalies in the North Pacific subarctic frontal zone: observations and a coupled model simulation[J]. Journal of Climate, 2012, 25(1): 111−139. doi: 10.1175/JCLI-D-11-00046.1
|
[27] |
Gu Daifang, Philander S G H. Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics[J]. Science, 1997, 275(5301): 805−807. doi: 10.1126/science.275.5301.805
|
[28] |
Li Yuanlong, Wang Fan, Sun Yan. Low-frequency spiciness variations in the tropical Pacific Ocean observed during 2003−2012[J]. Geophysical Research Letters, 2012, 39(23): L23601.
|
[29] |
Kleeman R, McCreary Jr J P, Klinger B A. A mechanism for generating ENSO decadal variability[J]. Geophysical Research Letters, 1999, 26(12): 1743−1746. doi: 10.1029/1999GL900352
|
[30] |
Zhang Dongxiao, McPhaden M J. Decadal variability of the shallow Pacific meridional overturning circulation: relation to tropical sea surface temperatures in observations and climate change models[J]. Ocean Modelling, 2006, 15(3/4): 250−273.
|
[31] |
Vimont D J, Wallace J M, Battisti D S. The seasonal footprinting mechanism in the Pacific: implications for ENSO[J]. Journal of Climate, 2003, 16(16): 2668−2675. doi: 10.1175/1520-0442(2003)016<2668:TSFMIT>2.0.CO;2
|
[32] |
Landscheidt T. Trends in Pacific Decadal Oscillation subjected to solar forcing[EB/OL]. [2021−10−16]. http://www.john-daly/theodor/pdotrend.htm.
|
[33] |
Hamamoto M, Yasuda I. Synchronized interdecadal variations behind regime shifts in the Pacific Decadal Oscillation[J]. Journal of Oceanography, 2021, 77(3): 383−392. doi: 10.1007/s10872-021-00592-8
|
[34] |
Capotondi A, Wittenberg A T, Newman M, et al. Understanding ENSO diversity[J]. Bulletin of the American Meteorological Society, 2015, 96(6): 921−938. doi: 10.1175/BAMS-D-13-00117.1
|
[35] |
L’Heureux M L, Levine A F Z, Newman M, et al. ENSO prediction[M]//McPhaden M J, Santoso A, Cai Wenju. El Niño Southern Oscillation in A Changing Climate. Hoboken: American Geophysical Union, 2020: 227−246.
|
[36] |
Eyring V, Bony S, Meehl G A, et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization[J]. Geoscientific Model Development, 2016, 9(5): 1937−1958. doi: 10.5194/gmd-9-1937-2016
|
[37] |
顾薇, 李崇银. IPCC AR4中海气耦合模式对中国东部夏季降水及PDO、NAO年代际变化的模拟能力分析[J]. 大气科学学报, 2010, 33(4): 401−411.
Gu Wei, Li Chongyin. Evaluation of the IPCC AR4 climate models in simulating the interdecadal variations of the east China summer precipitation, PDO and NAO[J]. Transactions of Atmospheric Sciences, 2010, 33(4): 401−411.
|
[38] |
Wang Tao, Miao Jiapeng. Twentieth-century Pacific Decadal Oscillation simulated by CMIP5 coupled models[J]. Atmospheric and Oceanic Science Letters, 2018, 11(1): 94−101. doi: 10.1080/16742834.2017.1381548
|
[39] |
陈红. CMIP5耦合模式对太平洋年代际振荡的模拟与预估[J]. 大气科学, 2019, 43(4): 783−795.
Chen Hong. Simulation and projection of the Pacific Decadal Oscillation based on CMIP5 coupled models[J]. Chinese Journal of Atmospheric Sciences, 2019, 43(4): 783−795.
|
[40] |
Mochizuki T, Ishii M, Kimoto M, et al. Pacific decadal oscillation hindcasts relevant to near-term climate prediction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(5): 1833−1837.
|
[41] |
Mochizuki T, Chikamoto Y, Kimoto M, et al. Decadal prediction using a recent series of MIROC global climate models[J]. Journal of the Meteorological Society of Japan, 2012, 90A: 373−383.
|
[42] |
Alexander M A, Matrosova L, Penland C, et al. Forecasting Pacific SSTs: linear inverse model predictions of the PDO[J]. Journal of Climate, 2008, 21(2): 385−402. doi: 10.1175/2007JCLI1849.1
|
[43] |
Wen Caihong, Xue Yan, Kumar A. Seasonal prediction of North Pacific SSTs and PDO in the NCEP CFS hindcasts[J]. Journal of Climate, 2012, 25(17): 5689−5710. doi: 10.1175/JCLI-D-11-00556.1
|
[44] |
Furtado J C, Di Lorenzo E, Schneider N, et al. North Pacific decadal variability and climate change in the IPCC AR4 models[J]. Journal of Climate, 2011, 24(12): 3049−3067. doi: 10.1175/2010JCLI3584.1
|
[45] |
Henley B J. Pacific decadal climate variability: indices, patterns and tropical-extratropical interactions[J]. Global and Planetary Change, 2017, 155: 42−55. doi: 10.1016/j.gloplacha.2017.06.004
|
[46] |
Kim H M, Ham Y G, Scaife A A. Improvement of initialized decadal predictions over the North Pacific Ocean by systematic anomaly pattern correction[J]. Journal of Climate, 2014, 27(13): 5148−5162. doi: 10.1175/JCLI-D-13-00519.1
|
[47] |
和玉君, 刘咪咪, 王斌. 年代际预测和耦合资料同化研究综述[J]. 地球物理学报, 2020, 63(1): 1−18.
He Yujun, Liu Mimi, Wang Bin. Review on the study of decadal prediction and coupled data assimilation[J]. Chinese Journal of Geophysics, 2020, 63(1): 1−18.
|
[48] |
Chen Shangfeng, Yu Bin, Wu Renguang, et al. The dominant North Pacific atmospheric circulation patterns and their relations to Pacific SSTs: historical simulations and future projections in the IPCC AR6 models[J]. Climate Dynamics, 2021, 56(3): 701−725.
|
[49] |
Qiao Fangli, Yuan Yeli, Yang Yongzeng, et al. Wave-induced mixing in the upper ocean: distribution and application to a global ocean circulation model[J]. Geophysical Research Letters, 2004, 31(11): L11303.
|
[50] |
Song Zhenya, Qiao Fangli, Song Yajuan. Response of the equatorial basin-wide SST to non-breaking surface wave-induced mixing in a climate model: an amendment to tropical bias[J]. Journal of Geophysical Research, 2012, 117(C11): C00J26.
|
[51] |
Qiao Fangli, Song Zhenya, Bao Ying, et al. Development and evaluation of an Earth System Model with surface gravity waves[J]. Journal of Geophysical Research, 2013, 118(9): 4514−4524. doi: 10.1002/jgrc.20327
|
[52] |
Liu Zhengyu. Dynamics of interdecadal climate variability: a historical perspective[J]. Journal of Climate, 2012, 25(6): 1963−1995. doi: 10.1175/2011JCLI3980.1
|
[53] |
宋振亚, 鲍颖, 乔方利. FIO-ESM v2.0模式及其参与CMIP6的方案[J]. 气候变化研究进展, 2019, 15(5): 558−565.
Song Zhenya, Bao Ying, Qiao Fangli. Introduction of FIO-ESM v2.0 and its participation plan in CMIP6 experiments[J]. Climate Change Research, 2019, 15(5): 558−565.
|
[54] |
宋振亚. 耦合海浪的地球系统模式FIO-ESM[J]. 气候变化研究快报, 2020, 9(1): 26−39. doi: 10.12677/CCRL.2020.91004
Song Zhenya. FIO-ESM: the earth system model coupled with ocean surface gravity waves[J]. Climate Change Research Letters, 2020, 9(1): 26−39. doi: 10.12677/CCRL.2020.91004
|
[55] |
Bao Ying, Song Zhenya, Qiao Fangli. FIO-ESM version 2.0: model description and evaluation[J]. Journal of Geophysical Research, 2020, 125(6): e2019JC016036.
|
[56] |
Zhang Yuan, Wallace J M, Battisti D S. ENSO-like Interdecadal variability: 1900−93[J]. Journal of Climate, 1997, 10(5): 1004−1020. doi: 10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2
|
[57] |
Trenberth K E, Fasullo J T. An apparent hiatus in global warming?[J]. Earth’s Future, 2013, 1(1): 19−32. doi: 10.1002/2013EF000165
|
[58] |
North G R, Bell T L, Cahalan R F, et al. Sampling errors in the estimation of empirical orthogonal functions[J]. Monthly Weather Review, 1982, 110(7): 699−706. doi: 10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2
|
[59] |
Bond N A, Overland J E, Spillane M, et al. Recent shifts in the state of the North Pacific[J]. Geophysical Research Letters, 2003, 30(23): 2183.
|
[60] |
Ceballos L I, Di Lorenzo E, Hoyos C D, et al. North Pacific Gyre Oscillation synchronizes climate fluctuations in the eastern and western boundary systems[J]. Journal of Climate, 2009, 22(19): 5163−5174. doi: 10.1175/2009JCLI2848.1
|
[61] |
Rogers J C. The North Pacific oscillation[J]. Journal of Climatology, 1981, 1(1): 39−57. doi: 10.1002/joc.3370010106
|
[62] |
Di Lorenzo E, Schneider N, Cobb K M, et al. North Pacific Gyre Oscillation links ocean climate and ecosystem change[J]. Geophysical Research Letters, 2008, 35(8): L08607.
|
[63] |
Trenberth K E, Hurrell J W. Decadal atmosphere-ocean variations in the Pacific[J]. Climate Dynamics, 1994, 9(6): 303−319. doi: 10.1007/BF00204745
|
[64] |
Newman M, Alexander M A, Ault T R, et al. The Pacific decadal oscillation, revisited[J]. Journal of Climate, 2016, 29(12): 4399−4427. doi: 10.1175/JCLI-D-15-0508.1
|
[65] |
Miller A J, Cayan D R, Barnett T P, et al. The 1976−77 climate shift of the Pacific Ocean[J]. Oceanography, 1994, 7(1): 21−26. doi: 10.5670/oceanog.1994.11
|
[66] |
Chhak K C, Di Lorenzo E, Schneider N, et al. Forcing of low-frequency ocean variability in the Northeast Pacific[J]. Journal of Climate, 2009, 22(5): 1255−1276. doi: 10.1175/2008JCLI2639.1
|
[67] |
Smirnov D, Newman M, Alexander M A. Investigating the role of ocean-atmosphere coupling in the North Pacific Ocean[J]. Journal of Climate, 2014, 27(2): 592−606. doi: 10.1175/JCLI-D-13-00123.1
|
[68] |
Alexander M A, Scott J D. The role of Ekman ocean heat transport in the Northern Hemisphere response to ENSO[J]. Journal of Climate, 2008, 21(21): 5688−5707. doi: 10.1175/2008JCLI2382.1
|
[69] |
Coburn J, Pryor S C. Differential credibility of climate modes in CMIP6[J]. Journal of Climate, 2021, 34(20): 8145−8164. doi: 10.1175/JCLI-D-21-0359.1
|
[70] |
Stevenson J W, Niiler P P. Upper ocean heat budget during the Hawaii-to-Tahiti shuttle experiment[J]. Journal of Physical Oceanography, 1983, 13(10): 1894−1907. doi: 10.1175/1520-0485(1983)013<1894:UOHBDT>2.0.CO;2
|
[71] |
Moisan J R, Niiler P P. The seasonal heat budget of the North Pacific: net heat flux and heat storage rates (1950−1990)[J]. Journal of Physical Oceanography, 1998, 28(3): 401−421. doi: 10.1175/1520-0485(1998)028<0401:TSHBOT>2.0.CO;2
|
[72] |
Kwon Y O, Deser C. North Pacific decadal variability in the community climate system model version 2[J]. Journal of Climate, 2007, 20(11): 2416−2433. doi: 10.1175/JCLI4103.1
|
[73] |
Qiu Bo. Kuroshio Extension variability and forcing of the Pacific decadal oscillations: responses and potential feedback[J]. Journal of Physical Oceanography, 2003, 33(12): 2465−2482. doi: 10.1175/1520-0485(2003)033<2465:KEVAFO>2.0.CO;2
|
[74] |
Chelton D B, DeSzoeke R A, Schlax M G, et al. Geographical variability of the first baroclinic Rossby radius of deformation[J]. Journal of Physical Oceanography, 1998, 28(3): 433−460. doi: 10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2
|
[75] |
范海梅, 张庆华, 李丙瑞, 等. 第一斜压Rossby波在大洋传播中的调整[J]. 海洋科学进展, 2007, 25(1): 15−19.
Fan Haimei, Zhang Qinghua, Li Bingrui, et al. Adjustment of the first baroclinic rossby wave propagating in global ocean[J]. Advances in Marine Science, 2007, 25(1): 15−19.
|
[76] |
Schneider N, Miller A J, Pierce D W. Anatomy of North Pacific decadal variability[J]. Journal of Climate, 2002, 15(6): 586−605. doi: 10.1175/1520-0442(2002)015<0586:AONPDV>2.0.CO;2
|