Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 45 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
Liu Xu,Dong Jianxi,Jiang Shan, et al. Based on wavelet analysis of the direct economic loss of the typhoon storm surge in China cycle analysis and prediction[J]. Haiyang Xuebao,2023, 45(7):137–146 doi: 10.12284/hyxb2023109
Citation: Liu Xu,Dong Jianxi,Jiang Shan, et al. Based on wavelet analysis of the direct economic loss of the typhoon storm surge in China cycle analysis and prediction[J]. Haiyang Xuebao,2023, 45(7):137–146 doi: 10.12284/hyxb2023109

Based on wavelet analysis of the direct economic loss of the typhoon storm surge in China cycle analysis and prediction

doi: 10.12284/hyxb2023109
  • Received Date: 2022-08-31
  • Rev Recd Date: 2023-01-02
  • Available Online: 2023-08-08
  • Publish Date: 2023-07-01
  • Based on the statistical data of direct economic losses of typhoon storm surge in China from 1989 to 2021, the economic losses of storm surge disasters in China during 32 years showed a significant downward trend, showing a thick-tailed distribution as a whole, and a normal distribution after logarithmic processing. The periodic changes of the direct economic losses of typhoon storm surge in China were analyzed by Morlet wavelet analysis method. According to the t-test, there were two quasi-high-frequency oscillations in the whole region, 1−2 years and 7−8 years oscillation , but the annual cycle gradually shortened to 3−5 years with the change of time. It indicated that the economic loss sequence of storm surge had high-frequency oscillation and multi-period nested low-frequency oscillation. On this basis, Daubechies wavelet decomposition was used to separate high frequency signal and low frequency signal. According to the results of root mean square error (RMSE) and signal-to-noise ratio, Daubechies wavelet base was set the vanishing moment is 7 and the number of decomposition layers is 2 for the direct economic loss time series of typhoon storm surges in China from 1989 to 2021, which had the optimal decomposition and reconstruction effect. Based on the results of stationarity test and white noise test of wavelet coefficients of each decomposition layer, the combined wavelet decomposed−ARMA model was established. The simulation accuracy and prediction accuracy were both better than that of single Autoregressive Integrated Moving Average model and Fourier series expansion model, which verified the reliability and superiority of wavelet decomposition method for rapid assessment of economic loss of typhoon storm surge in China.
  • loading
  • [1]
    于福江, 董剑希, 李涛, 等. 风暴潮对我国沿海影响评价[M]. 北京: 海洋出版社, 2015.

    Yu Fujiang, Dong Jianxi, Li Tao, et al. Assessment of the Impact of Storm Surge on Coastal Areas in China[M]. Beijing: China Ocean Press, 2015.
    [2]
    卢美. 浙江海岸台风风暴潮漫堤风险评估研究[D]. 杭州: 浙江大学, 2013.

    Lu Mei. Study on risk assessment of seawall overflowed by typhoon storm surge at Zhejiang coast[D]. Hangzhou: Zhejiang University, 2013.
    [3]
    孔昊, 彭本荣, 刘容子, 等. 气候变化对中国海洋经济可持续发展的影响[J]. 海洋环境科学, 2018, 37(1): 116−124.

    Kong Hao, Peng Benrong, Liu Rongzi, et al. Impacts analysis of climate change on China’s marine economy[J]. Marine Environmental Science, 2018, 37(1): 116−124.
    [4]
    Wang Ke, Yang Yongsheng, Reniers G, et al. A study into the spatiotemporal distribution of typhoon storm surge disasters in China[J]. Natural Hazards, 2021, 108(1): 1237−1256. doi: 10.1007/s11069-021-04730-9
    [5]
    王凯. 台风影响下灾害性海洋动力过程时空特征及其对承灾体作用研究[D]. 青岛: 中国科学院大学(中国科学院海洋研究所), 2020.

    Wang Kai. Study on the spatial-temporal features of disastrous marine dynamic process and its effects on hazard-bearing body under the influence of typhoon[D]. Qingdao: University of Chinese Academy of Sciences (Institute of Oceanology, Chinese Academy of Science), 2020.
    [6]
    王思. 基于GIS技术和卷积神经网络的风暴潮灾害风险评估与区划研究[D]. 武汉: 中国地质大学, 2021.

    Wang Si. Risk assessment and zoning of storm surge disaster using GIS techniques and convolutional neural network[D]. Wuhan: China University of Geosciences, 2021.
    [7]
    孙海, 嵇文捷, 郑雅芝. 基于栅格与云模型的风暴潮洪水风险模拟评估方法——以珠海市香洲区为例[J]. 自然灾害学报, 2022, 31(1): 69−80.

    Sun Hai, Ji Wenjie, Zheng Yazhi. Storm surge flood risk simulation and evaluation method based on grid and cloud model: a case study of Xiangzhou District, Zhuhai City[J]. Journal of Natural Disasters, 2022, 31(1): 69−80.
    [8]
    Li Jian, Hou Yijun, Mo Dongxue, et al. Influence of tropical cyclone intensity and size on storm surge in the northern East China Sea[J]. Remote Sensing, 2019, 11(24): 3033. doi: 10.3390/rs11243033
    [9]
    Jiang Xinyu, Mori N, Tatano H, et al. Simulation-based exceedance probability curves to assess the economic impact of storm surge inundations due to climate change: a case study in Ise Bay, Japan[J]. Sustainability, 2019, 11(4): 1090. doi: 10.3390/su11041090
    [10]
    郭腾蛟, 李国胜. 风暴潮灾害经济损失灾前预评估研究进展[J]. 灾害学, 2018, 33(4): 164−168.

    Guo Tengjiao, Li Guosheng. Research progress on pre-assessment of economic losses before storm surge disasters[J]. Journal of Catastrophology, 2018, 33(4): 164−168.
    [11]
    殷克东, 韦茜, 李兴东. 风暴潮灾害社会经济损失评估研究[J]. 海洋环境科学, 2012, 31(6): 835−837, 842.

    Yin Kedong, Wei Qian, Li Xiongdong. The evaluation techniques of the socio-economic loss caused by storm surge disaster[J]. Marine Environmental Science, 2012, 31(6): 835−837, 842.
    [12]
    王甜甜, 刘强. 基于BAS-BP模型的风暴潮灾害损失预测[J]. 海洋环境科学, 2018, 37(3): 457−463. doi: 10.12111/j.cnki.mes20180323

    Wang Tiantian, Liu Qiang. The assessment of storm surge disaster loss based on BAS-BP model[J]. Marine Environmental Science, 2018, 37(3): 457−463. doi: 10.12111/j.cnki.mes20180323
    [13]
    杨雪雪, 刘强. 基于KPCA-RBF模型的风暴潮灾害经济损失预测[J]. 海洋科学, 2021, 45(10): 32−39.

    Yang Xuexue, Liu Qiang. Economic loss assessment of storm-surge disasters based on the KPCA-RBF model[J]. Marine Sciences, 2021, 45(10): 32−39.
    [14]
    潘艳艳, 王涛, 赵昕. 风暴潮灾害损失时间路径模拟与预测[J]. 统计与决策, 2016, 449(5): 87−89. doi: 10.13546/j.cnki.tjyjc.2016.05.023

    Pan Yanyan, Wang Tao, Zhao Xin. Time path simulation and prediction of storm surge disaster loss[J]. Statistics and Decision, 2016, 449(5): 87−89. doi: 10.13546/j.cnki.tjyjc.2016.05.023
    [15]
    孙丰霖. 中国沿海赤潮灾害时间序列特征的模拟与预测[J]. 海洋通报, 2021, 40(2): 232−240.

    Sun Fenglin. Simulation and forecast of the red tide’s time series characteristics in China seas[J]. Marine Science Bulletin, 2021, 40(2): 232−240.
    [16]
    李超超, 田军仓, 申若竹. 洪涝灾害风险评估研究进展[J]. 灾害学, 2020, 35(3): 131−136.

    Li Chaochao, Tian Juncang, Shen Ruozhu. Review on assessment of flood and waterlogging risk[J]. Journal of Catastrophology, 2020, 35(3): 131−136.
    [17]
    Taramelli A, Valentini E, Sterlacchini S. A GIS-based approach for hurricane hazard and vulnerability assessment in the Cayman Islands[J]. Ocean & Coastal Management, 2015, 108: 116−130.
    [18]
    冯倩, 刘强. 基于SVM-BP神经网络的风暴潮灾害损失预评估[J]. 海洋环境科学, 2017, 36(4): 615−621.

    Feng Qian, Liu Qiang. Pre-assessment for the loss caused by storm surge based on the SVM-BP neural network[J]. Marine Environmental Science, 2017, 36(4): 615−621.
    [19]
    郝婧, 刘强. 基于SSA-ELM模型的台风风暴潮灾害损失预评估[J]. 海洋科学, 2022, 46(2): 55−63.

    Hao Jing, Liu Qiang. Pre-assessment of typhoon storm surge disaster loss based on the SSA-ELM model[J]. Marine Sciences, 2022, 46(2): 55−63.
    [20]
    张颖超, 范金平, 邓华. 基于组合预测的浙江省台风灾害损失预测[J]. 自然灾害学报, 2013, 22(6): 223−231. doi: 10.13577/j.jnd.2003.0630

    Zhang Yingchao, Fan Jinping, Deng Hua. Forecasting of typhoon disaster loss in Zhejiang Province based on the combination forecasting model[J]. Journal of Natural Disasters, 2013, 22(6): 223−231. doi: 10.13577/j.jnd.2003.0630
    [21]
    郭腾蛟, 李国胜. 基于验证性因素分析的台风风暴潮灾害经济损失影响因子优化分析[J]. 自然灾害学报, 2020, 29(1): 121−131.

    Guo Tengjiao, Li Guosheng. The optimal analysis of the impact factors of economic losses due to typhoon storm surge based on confirmatory factor analysis[J]. Journal of Natural Disasters, 2020, 29(1): 121−131.
    [22]
    袁顺, 赵昕, 南旭, 等. 结构突变视角下政府灾害支出的平稳协调机制[J]. 海洋环境科学, 2016, 35(1): 35−40.

    Yuan Shun, Zhao Xin, Nan Xu, et al. Coordination mechanism between coastal financial expenditure and disaster losses based on structural change[J]. Marine Environmental Science, 2016, 35(1): 35−40.
    [23]
    Yi Xiaojing, Sheng Kun, Wang Yuanyue, et al. Can economic development alleviate storm surge disaster losses in coastal areas of China?[J]. Marine Policy, 2021, 129: 104531. doi: 10.1016/j.marpol.2021.104531
    [24]
    张丽旭, 赵敏, 蒋晓山. 中国赤潮发生频率的变化趋势及其多发年份的R/S预测[J]. 海洋通报, 2010, 29(1): 72−77. doi: 10.3969/j.issn.1001-6392.2010.01.011

    Zhang Lixu, Zhao Min, Jiang Xiaoshan. The change trend of happened frequency and the R/S forecast of frequently happened year for red tide in China[J]. Marine Science Bulletin, 2010, 29(1): 72−77. doi: 10.3969/j.issn.1001-6392.2010.01.011
    [25]
    高强, 谷文凯, 林亚琼, 等. 山东省风暴潮灾害经济损失预测——基于灰色−周期外延组合模型[J]. 海洋经济, 2016, 6(1): 46−51.

    Gao Qiang, Gu Wenkai, Lin Yaqiong, et al. The financial loss prediction of storm surge in Shandong Province based on the gray-periodic extensional combinatorial model[J]. Marine Economy, 2016, 6(1): 46−51.
    [26]
    刘旭, 梁颖祺, 王兆毅, 等. 基于海温因子的传递函数模型在黄海绿潮规模预测中的应用[J]. 海洋预报, 2022, 39(4): 91−101. doi: 10.11737/j.issn.1003-0239.2022.04.010

    Liu Xu, Liang Yingqi, Wang Zhaoyi, et al. Application of transfer function model in predicting the green tide scale in the Yellow Sea based on sea surface temperature[J]. Marine Forecasts, 2022, 39(4): 91−101. doi: 10.11737/j.issn.1003-0239.2022.04.010
    [27]
    李威骏. 基于小波分析的股票市场异常波动及风险测度研究[D]. 成都: 西南财经大学, 2019.

    Li Weijun. Research on abnormal shocks of stock market and risk measurement based on wavelet analysis[D]. Chengdu: Southwestern University of Finance and Economics, 2019.
    [28]
    孙世超, 董曜, 李娜, 等. 基于小波分解的集卡港内周转时间预测[J]. 上海海事大学学报, 2021, 42(3): 8−14.

    Sun Shichao, Dong Yao, Li Na, et al. Truck turnaround time prediction in a port based on wavelet decomposition[J]. Journal of Shanghai Maritime University, 2021, 42(3): 8−14.
    [29]
    王晓亮. 基于时间序列分析理论的风速短期预测方法研究[D]. 北京: 华北电力大学, 2018.

    Wang Xiaoliang. Research on short-term wind speed forecasting method based on time series analysis theory[D]. Beijing: North China Electric Power University, 2018.
    [30]
    王淋淋. 珠江口海平面的变化机制及对沿岸淹没风险研究[D]. 北京: 清华大学, 2017.

    Wang Linlin. The mechanism of sea level changes in Pearl River Estuary and the assessment of coastal flooding risk[D]. Beijing: Tsinghua University, 2017.
    [31]
    孙鹤泉, 金绍华, 张宇. 基于MODWT变换的海洋重力观测航行数据滤波方法[J]. 海洋通报, 2020, 39(4): 426−430.

    Sun Hequan, Jin Shaohua, Zhang Yu. MODWT transform applied to navigation data filtering in ocean gravity observation[J]. Marine Science Bulletin, 2020, 39(4): 426−430.
    [32]
    邹磊, 夏军, 张印, 等. 海河流域降水时空演变特征及其驱动力分析[J]. 水资源保护, 2021, 37(1): 53−60.

    Zou Lei, Xia Jun, Zhang Yin, et al. Spatial-temporal change characteristics and driving forces of precipitation in the Haihe River Basin[J]. Water Resources Protection, 2021, 37(1): 53−60.
    [33]
    王晓利. 中国沿海极端气候变化及其对NDVI的影响特征研究[D]. 烟台: 中国科学院烟台海岸带研究所, 2017.

    Wang Xiaoli. Variation of extreme climate and its impact on NDVI in the coastal area of China[D]. Yantai: Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 2017.
    [34]
    方杰. 基于小波分析的人体血压预测[D]. 武汉: 华中科技大学, 2017.

    Fang Jie. Prediction of human blood pressure based on wavelet analysis[D]. Wuhan: Huazhong University of Science & Technology, 2017.
    [35]
    Fang Jiayi, Liu Wei, Yang Saini, et al. Spatial-temporal changes of coastal and marine disasters risks and impacts in Mainland China[J]. Ocean & Coastal Management, 2017, 139: 125−140.
    [36]
    张晓影, 叶彬, 刘海婧, 等. 基于小波功率谱和Anusplin的江苏省近58年来降水时空变化分析[J]. 水电能源科学, 2022, 40(1): 6−9.

    Zhang Xiaoying, Ye Bin, Liu Haijing, et al. Spatial and temporal variation of precipitation in Jiangsu Province in recent 58 years based on wavelet power spectrum and Anusplin[J]. Water Resources and Power, 2022, 40(1): 6−9.
    [37]
    陈志伟. 西太热带气旋的气候特征及对海洋热状态响应机理的研究[D]. 上海: 上海师范大学, 2019.

    Chen Zhiwei. Climatic characteristics of the Northwest Pacific tropical cyclone and its response mechanism with the thermal status of ocean[D]. Shanghai: Shanghai Normal University, 2019.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(5)

    Article views (190) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return