Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 45 Issue 8
Aug.  2023
Turn off MathJax
Article Contents
Ma Shuai,Zhang Yong,Yang Xiang, et al. Combined effects of ocean acidification and phosphorus limitation on physiological characteristics of the coccolithophores Emiliania huxleyi[J]. Haiyang Xuebao,2023, 45(8):120–129 doi: 10.12284/hyxb2023108
Citation: Ma Shuai,Zhang Yong,Yang Xiang, et al. Combined effects of ocean acidification and phosphorus limitation on physiological characteristics of the coccolithophores Emiliania huxleyi[J]. Haiyang Xuebao,2023, 45(8):120–129 doi: 10.12284/hyxb2023108

Combined effects of ocean acidification and phosphorus limitation on physiological characteristics of the coccolithophores Emiliania huxleyi

doi: 10.12284/hyxb2023108
  • Received Date: 2023-01-10
  • Rev Recd Date: 2023-04-25
  • Available Online: 2023-08-31
  • Publish Date: 2023-08-31
  • Coccolithophores can produce particulate organic carbon (POC) via photosynthesis and synthesize particulate inorganic carbon (PIC) via calcification; they also make an important contribution to marine carbon cycle. Some studies have reported that ocean acidification generally increases POC content and decreases PIC content of coccolithophores, however, most of the studies show these results under nutrient replete conditions, and a few studies focus on the combined effects of nutrient limitation and ocean acidification on coccolithophores. In this study, we investigated the physiological responses of the coccolithophore Emiliania huxleyi to ocean acidification under dissolved inorganic phosphorus (DIP) limitation. Our data show that ocean acidification and DIP limitation act synergistically to reduce growth rate, relative photosynthetic electron transport rate and light use efficiency of photosynthetic system II of E. huxleyi. Dissolved inorganic phosphorus limitation dominantly increases cellular POC content and offsets the negative effect of ocean acidification on cellular PIC content and the ratio of PIC : POC. Our results suggest that DIP limitation changed the response trends of POC and PIC contents to ocean acidification, which indicates that the contributions of coccolithophores to marine carbon cycle are different in these ocean areas with different DIP concentrations.
  • loading
  • [1]
    Friedlingstein P, Cox P, Betts R, et al. Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison[J]. Journal of Climate, 2006, 19(14): 3337−3353. doi: 10.1175/JCLI3800.1
    [2]
    Sabine C L, Feely R A, Gruber N, et al. The oceanic sink for anthropogenic CO2[J]. Science, 2004, 305(5682): 367−371. doi: 10.1126/science.1097403
    [3]
    Doney S C. Plankton in a warmer world[J]. Nature, 2006, 444(7120): 695−696. doi: 10.1038/444695a
    [4]
    Thingstad T F, Krom M D, Mantoura R F C, et al. Nature of phosphorus limitation in the ultraoligotrophic eastern Mediterranean[J]. Science, 2005, 309(5737): 1068−1071. doi: 10.1126/science.1112632
    [5]
    Vidal M, Duarte C M, Agustí S, et al. Alkaline phosphatase activities in the central Atlantic Ocean indicate large areas with phosphorus deficiency[J]. Marine Ecology Progress Series, 2003, 262: 43−53. doi: 10.3354/meps262043
    [6]
    Krom M D, Kress N, Brenner S, et al. Phosphorus limitation of primary productivity in the eastern Mediterranean Sea[J]. Limnology and Oceanography, 1991, 36(3): 424−432. doi: 10.4319/lo.1991.36.3.0424
    [7]
    Shemi A, Schatz D, Fredricks H F, et al. Phosphorus starvation induces membrane remodeling and recycling in Emiliania huxleyi[J]. New Phytologist, 2016, 211(3): 886−898. doi: 10.1111/nph.13940
    [8]
    Meyer J, Riebesell U. Reviews and syntheses: responses of coccolithophores to ocean acidification: a meta-analysis[J]. Biogeosciences, 2015, 12(6): 1671−1682. doi: 10.5194/bg-12-1671-2015
    [9]
    孙军. 今生颗石藻的有机碳泵和碳酸盐反向泵[J]. 地球科学进展, 2007, 22(12): 1231−1239. doi: 10.3321/j.issn:1001-8166.2007.12.003

    Sun Jun. Organic carbon pump and carbonate counter pump of living coccolithophorid[J]. Advances in Earth Science, 2007, 22(12): 1231−1239. doi: 10.3321/j.issn:1001-8166.2007.12.003
    [10]
    Balch W M, Holligan P M, Kilpatrick K A. Calcification, photosynthesis and growth of the bloom-forming coccolithophore, Emiliania huxleyi[J]. Continental Shelf Research, 1992, 12(12): 1353−1374. doi: 10.1016/0278-4343(92)90059-S
    [11]
    Xie Emei, Xu Kui, Li Zhengke, et al. Disentangling the effects of ocean carbonation and acidification on elemental contents and macromolecules of the coccolithophore Emiliania huxleyi[J]. Frontiers in Microbiology, 2021, 12: 737454. doi: 10.3389/fmicb.2021.737454
    [12]
    Riebesell U, Zondervan I, Rost B, et al. Reduced calcification of marine plankton in response to increased atmospheric CO2[J]. Nature, 2000, 407(6802): 364−367. doi: 10.1038/35030078
    [13]
    廖晏, 冯媛媛, 刘瑶, 等. 氮限制和海洋酸化对颗石藻Emiliania huxleyi NIWA1108生理指标的交互影响[J]. 天津科技大学学报, 2019, 34(4): 56−62.

    Liao Yan, Feng Yuanyuan, Liu Yao, et al. Interactive effects of nitrogen limitation and ocean acidification on the physiology of coccolithophore Emiliania huxleyi NIWA1108[J]. Journal of Tianjin University of Science & Technology, 2019, 34(4): 56−62.
    [14]
    Duff S M G, Sarath G, Plaxton W C. The role of acid phosphatases in plant phosphorus metabolism[J]. Physiologia Plantarum, 1994, 90(4): 791−800. doi: 10.1111/j.1399-3054.1994.tb02539.x
    [15]
    Vagabov V M, Trilisenko L V, Kulaev I S. Dependence of inorganic polyphosphate chain length on the orthophosphate content in the culture medium of the yeast Saccharomyces cerevisiae[J]. Biochemistry, 2000, 65(3): 349−354.
    [16]
    Tyrrell T, Taylor A H. A modelling study of Emiliania huxleyi in the NE Atlantic[J]. Journal of Marine Systems, 1996, 9(1/2): 83−112.
    [17]
    Riegman R, Stolte W, Noordeloos A A M, et al. Nutrient uptake and alkaline phosphatase (ec 3: 1: 3: 1) activity of Emiliania huxleyi (PRYMNESIOPHYCEAE) during growth under n and p limitation in continuous cultures[J]. Journal of Phycology, 2000, 36(1): 87−96. doi: 10.1046/j.1529-8817.2000.99023.x
    [18]
    Oviedo A M, Langer G, Ziveri P. Effect of phosphorus limitation on coccolith morphology and element ratios in Mediterranean strains of the coccolithophore Emiliania huxleyi[J]. Journal of Experimental Marine Biology and Ecology, 2014, 459: 105−113. doi: 10.1016/j.jembe.2014.04.021
    [19]
    Berges J A, Franklin D J, Harrison P J. Evolution of an artificial seawater medium: improvements in enriched seawater, artificial water over the last two decades[J]. Journal of Phycology, 2001, 37(6): 1138−1145. doi: 10.1046/j.1529-8817.2001.01052.x
    [20]
    Guillard R R L, Ryther J H. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran[J]. Canadian Journal of Microbiology, 1962, 8(2): 229−239. doi: 10.1139/m62-029
    [21]
    Hansen H P, Koroleff F. Determination of nutrients[M]//Grasshoff K, Kremling K, Ehrhardt M. Methods of Seawater Analysis. 3rd ed. New York: Wiley-VCH, 1999: 159−228.
    [22]
    Zhang Yong, Li Zhengke, Schulz K G, et al. Growth-dependent changes in elemental stoichiometry and macromolecular allocation in the coccolithophore Emiliania huxleyi under different environmental conditions[J]. Limnology and Oceanography, 2021, 66(8): 2999−3009. doi: 10.1002/lno.11854
    [23]
    Dickson A G, Afghan J D, Anderson G C. Reference materials for oceanic CO2 analysis: a method for the certification of total alkalinity[J]. Marine Chemistry, 2003, 80(2/3): 185−197.
    [24]
    Pierrot D E, Lewis E, Wallace D W R. MS Excel program developed for CO2 system calculations[R]. ORNL/CDIAC-105a. Oak Ridge, Tennessee: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U. S. Department of Energy, 2006.
    [25]
    Roy R N, Roy L N, Lawson M, et al. Thermodynamics of the dissociation of boric acid in seawater at S=35 from 0 to 55℃[J]. Marine Chemistry, 1993, 44(2/4): 243−248.
    [26]
    Jeffrey S W, Humphrey G F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton[J]. Biochemie und Physiologie der Pflanzen, 1975, 167(2): 191−194. doi: 10.1016/S0015-3796(17)30778-3
    [27]
    Davies B H. Carotenoids[M]//Goodwin T W. Chemistry and Biochemistry of Plant Pigments. London: Academic Press, 1976: 38−165.
    [28]
    Baker N R. Chlorophyll fluorescence: a probe of photosynthesis in vivo[J]. Annual Review of Plant Biology, 2008, 59: 89−113. doi: 10.1146/annurev.arplant.59.032607.092759
    [29]
    Ralph P J, Gademann R. Rapid light curves: a powerful tool to assess photosynthetic activity[J]. Aquatic Botany, 2005, 82(3): 222−237. doi: 10.1016/j.aquabot.2005.02.006
    [30]
    高坤山. 藻类固碳——理论、进展与方法[M]. 北京: 科学出版社, 2014.

    Gao Kunshan. Algal Carbon Fixation: Basis, Advances and Methods[M]. Beijing: Science Press, 2014.
    [31]
    Smith H E K, Tyrrell T, Charalampopoulou A, et al. Predominance of heavily calcified coccolithophores at low CaCO3 saturation during winter in the Bay of Biscay[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(23): 8845−8849.
    [32]
    Wang Cong, Sun Xueqiong, Wang Jingtian, et al. Physiological and metabolic effects of glyphosate as the sole P source on a cosmopolitan phytoplankter and biogeochemical implications[J]. Science of the Total Environment, 2022, 832: 155094. doi: 10.1016/j.scitotenv.2022.155094
    [33]
    Fader C M, Colombo M I. Autophagy and multivesicular bodies: two closely related partners[J]. Cell Death & Differentiation, 2009, 16(1): 70−78.
    [34]
    Müller M, Schmidt O, Angelova M, et al. The coordinated action of the MVB pathway and autophagy ensures cell survival during starvation[J]. eLife, 2015, 4: e07736. doi: 10.7554/eLife.07736
    [35]
    Zhang Yong, Collins S, Gao Kunshan. Reduced growth with increased quotas of particulate organic and inorganic carbon in the coccolithophore Emiliania huxleyi under future ocean climate change conditions[J]. Biogeosciences, 2020, 17(24): 6357−6375. doi: 10.5194/bg-17-6357-2020
    [36]
    Zhang Yong, Zhang Yong, Ma Shuai, et al. Reallocation of elemental content and macromolecules in the coccolithophore Emiliania huxleyi to acclimate to climate change[J]. Biogeosciences, 2023, 20(7): 1299−1312. doi: 10.5194/bg-20-1299-2023
    [37]
    Rokitta S D, de Nooijer L J, Trimborn S, et al. Transcriptome analyses reveal differential gene expression patterns between the life-cycle stages of Emiliania huxleyi (Haptophyta) and reflect specialization to different ecological niches[J]. Journal of Phycology, 2011, 47(4): 829−838. doi: 10.1111/j.1529-8817.2011.01014.x
    [38]
    Rouco M, Branson O, Lebrato M, et al. The effect of nitrate and phosphate availability on Emiliania huxleyi (NZEH) physiology under different CO2 scenarios[J]. Frontiers in Microbiology, 2013, 4: 155.
    [39]
    Beardall J, Roberts S, Raven J A. Regulation of inorganic carbon acquisition by phosphorus limitation in the green alga Chlorella emersonii[J]. Canadian Journal of Botany, 2005, 83(7): 859−864. doi: 10.1139/b05-070
    [40]
    Rost B, Riebesell U. Coccolithophores and the biological pump: responses to environmental changes[M]//Thierstein H R, Young J R. Coccolithophores: From Molecular Processes to Global Impact. Berlin, Heidelberg: Springer, 2004: 99−125.
    [41]
    Jin Peng, Ding Jiancheng, Xing Tao, et al. High levels of solar radiation offset impacts of ocean acidification on calcifying and non-calcifying strains of Emiliania huxleyi[J]. Marine Ecology Progress Series, 2017, 568: 47−58. doi: 10.3354/meps12042
    [42]
    Li Zhengke, Dai Guozheng, Zhang Yong, et al. Photosynthetic adaptation to light availability shapes the ecological success of bloom-forming cyanobacterium Pseudanabaena to iron limitation[J]. Journal of Phycology, 2020, 56(6): 1457−1467. doi: 10.1111/jpy.13040
    [43]
    Li Hangxiao, Xu Tianpeng, Ma Jing, et al. Physiological responses of Skeletonema costatum to the interactions of seawater acidification and the combination of photoperiod and temperature[J]. Biogeosciences, 2021, 18(4): 1439−1449. doi: 10.5194/bg-18-1439-2021
    [44]
    Wang Cong, Wang Jingtian, Li Ling, et al. P-limitation promotes carbon accumulation and sinking of Emiliania huxleyi through transcriptomic reprogramming[J]. Frontiers in Marine Science, 2022, 9: 860222. doi: 10.3389/fmars.2022.860222
    [45]
    Wördenweber R, Rokitta S D, Heidenreich E, et al. Phosphorus and nitrogen starvation reveal life-cycle specific responses in the metabolome of Emiliania huxleyi (Haptophyta)[J]. Limnology and Oceanography, 2018, 63(1): 203−226. doi: 10.1002/lno.10624
    [46]
    Müller M N, Antia A N, LaRoche J. Influence of cell cycle phase on calcification in the coccolithophore Emiliania huxleyi[J]. Limnology and Oceanography, 2008, 53(2): 506−512. doi: 10.4319/lo.2008.53.2.0506
    [47]
    Zhang Yong, Fu Feixue, Hutchins D A, et al. Combined effects of CO2 level, light intensity, and nutrient availability on the coccolithophore Emiliania huxleyi[J]. Hydrobiologia, 2019, 842(1): 127−141. doi: 10.1007/s10750-019-04031-0
    [48]
    Langer G, Oetjen K, Brenneis T. Calcification of Calcidiscus leptoporus under nitrogen and phosphorus limitation[J]. Journal of Experimental Marine Biology and Ecology, 2012, 413: 131−137. doi: 10.1016/j.jembe.2011.11.028
    [49]
    Gerecht A C, Šupraha L, Edvardsen B, et al. High temperature decreases the PIC/POC ratio and increases phosphorus requirements in Coccolithus pelagicus (Haptophyta)[J]. Biogeosciences, 2014, 11(13): 3531−3545. doi: 10.5194/bg-11-3531-2014
    [50]
    Rokitta S D, John U, Rost B. Ocean acidification affects redox-balance and ion-homeostasis in the life-cycle stages of Emiliania huxleyi[J]. PLoS One, 2012, 7(12): e52212. doi: 10.1371/journal.pone.0052212
    [51]
    Langer G, Nehrke G, Probert I, et al. Strain-specific responses of Emiliania huxleyi to changing seawater carbonate chemistry[J]. Biogeosciences, 2009, 6(11): 2637−2646. doi: 10.5194/bg-6-2637-2009
    [52]
    Fiorini S, Middelburg J J, Gattuso J P. Testing the effects of elevated pCO2 on coccolithophores (Prymnesiophyceae): comparison between haploid and diploid life stages[J]. Journal of Phycology, 2011, 47(6): 1281−1291. doi: 10.1111/j.1529-8817.2011.01080.x
    [53]
    Matthiessen B, Eggers S L, Krug S A. High nitrate to phosphorus regime attenuates negative effects of rising pCO2 on total population carbon accumulation[J]. Biogeosciences, 2012, 9(3): 1195−1203. doi: 10.5194/bg-9-1195-2012
    [54]
    Hoffmann R, Kirchlechner C, Langer G, et al. Insight into Emiliania huxleyi coccospheres by focused ion beam sectioning[J]. Biogeosciences, 2015, 12(3): 825−834. doi: 10.5194/bg-12-825-2015
    [55]
    Riebesell U, Bach L T, Bellerby R G J, et al. Competitive fitness of a predominant pelagic calcifier impaired by ocean acidification[J]. Nature Geoscience, 2017, 10(1): 19−23. doi: 10.1038/ngeo2854
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article views (244) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return