Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 45 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
Feng Zongbao,Chen Zhihua,Yang Chunli, et al. Sediment provenances and environmental changes in the southeastern Scotia Sea, Antarctica, since the Last Glaciation[J]. Haiyang Xuebao,2023, 45(7):56–68 doi: 10.12284/hyxb2023105
Citation: Feng Zongbao,Chen Zhihua,Yang Chunli, et al. Sediment provenances and environmental changes in the southeastern Scotia Sea, Antarctica, since the Last Glaciation[J]. Haiyang Xuebao,2023, 45(7):56–68 doi: 10.12284/hyxb2023105

Sediment provenances and environmental changes in the southeastern Scotia Sea, Antarctica, since the Last Glaciation

doi: 10.12284/hyxb2023105
  • Received Date: 2022-12-17
  • Rev Recd Date: 2023-01-15
  • Available Online: 2023-08-02
  • Publish Date: 2023-07-01
  • Rare earth elements (REE) and their relationships with biogenic silica (BSiO2), magnetic susceptibility, Al2O3 and Fe2O3 in Core DC-11 were analyzed to reveal sediment provenances and transport history by iceberg-current-atmosphere since 34 ka BP in the southeastern Scotia Sea, Antarctica. Temporal variation of REE is similar to that of Al2O3, indicating they mainly occur in terrigenous detritus and BSiO2 has obvious dilution effect on them. Sediments with high REE concentration, flat shale-normalized pattern, weak positive Eu anomaly, and high LaN/YbN ratio during the last glacial period indicated they are transferred from the Weddell Sea and eroded from the bordering lands with relatively old crust. The increases in magnetic susceptibility, ΔAl2O3, TFe2O3/Eu ratio indicated an enhanced input of dust from South America during this period. In early Deglaciation (19.6−14.1 ka BP), increasing Eu positive anomaly and lower LaN/YbN ratio indicated the southern branch of Antarctic Circumpolar Current (ACC) strengthened and contributed more sediments from the South Shetland Islands and Antarctic Peninsula due to the southward shifts of oceanic fronts, while decreasing magnetic susceptibility, ΔAl2O3, TFe2O3/Eu ratios showed rapid decrease in dust supply from South America. During the Antarctic Cold Reversal period (ACR, 14.1−12.9 ka BP), sediments from the South Shetland Islands and Antarctic Peninsula decreased sharply due to cold condition and weakened ACC branch, the weakest Eu positive anomaly and highest LaN/YbN ratio indicated that the sediments from the Weddell Sea dominated in the core again, and the peak of ice raft debris indicated ice rafting is vital or dominant agent. In the late Deglaciation (12.9−11.7 ka BP), the return of ACC branch to the South Shetland Islands and Antarctic Peninsula contributed more to the sediments in Core DC-11; in Holocene (11.7−0 ka BP), the ACC branch in the area between the South Shetland Islands and Antarctic Peninsula was generally enhanced, and its contribution to core sediments increased to be roughly equivalent to the amount of sediments from the Weddell Sea.
  • loading
  • [1]
    Pudsey C J, Howe J A. Quaternary history of the Antarctic Circumpolar Current: evidence from the Scotia Sea[J]. Marine Geology, 1998, 148(1/2): 83−112.
    [2]
    Maldonado A, Barnolas A, Bohoyo F, et al. Contourite deposits in the central Scotia Sea: the importance of the Antarctic Circumpolar Current and the Weddell Gyre flows[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 198(1/2): 187−221.
    [3]
    Maldonado A, Bohoyo F, Galindo-Zaldívar J, et al. Ocean basins near the Scotia–Antarctic plate boundary: influence of tectonics and paleoceanography on the Cenozoic deposits[J]. Marine Geophysical Researches, 2006, 27(2): 83−107. doi: 10.1007/s11001-006-9003-4
    [4]
    Eagles G, Livermore R, Morris P. Small basins in the Scotia Sea: the Eocene Drake Passage gateway[J]. Earth and Planetary Science Letters, 2006, 242(3/4): 343−353.
    [5]
    Mccave I N, Crowhurst S J, Kuhn G, et al. Minimal change in Antarctic Circumpolar Current flow speed between the last glacial and Holocene[J]. Nature Geoscience, 2014, 7(2): 113−116. doi: 10.1038/ngeo2037
    [6]
    Diekmann B, Kuhn G, Rachold V, et al. Terrigenous sediment supply in the Scotia Sea (Southern Ocean): response to Late Quaternary ice dynamics in Patagonia and on the Antarctic Peninsula[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 162(3/4): 357−387.
    [7]
    Cofaigh C Ó, Dowdeswell J A, Pudsey C J. Late quaternary iceberg rafting along the Antarctic Peninsula continental rise and in the weddell and scotia seas[J]. Quaternary Research, 2001, 56(3): 308−321. doi: 10.1006/qres.2001.2267
    [8]
    Pérez L F, Martos Y M, García M, et al. Miocene to present oceanographic variability in the Scotia Sea and Antarctic ice sheets dynamics: insight from revised seismic-stratigraphy following IODP Expedition 382[J]. Earth and Planetary Science Letters, 2021, 553: 116657. doi: 10.1016/j.jpgl.2020.116657
    [9]
    Pugh R S, McCave I N, Hillenbrand C D, et al. Circum-Antarctic age modelling of Quaternary marine cores under the Antarctic Circumpolar Current: ice-core dust–magnetic correlation[J]. Earth and Planetary Science Letters, 2009, 284(1/2): 113−123.
    [10]
    Weber M E, Kuhn G, Sprenk D, et al. Dust transport from Patagonia to Antarctica—A new stratigraphic approach from the Scotia Sea and its implications for the last glacial cycle[J]. Quaternary Science Reviews, 2012, 36: 177−188. doi: 10.1016/j.quascirev.2012.01.016
    [11]
    Xiao Wenshen, Esper O, Gersonde R. Last Glacial-Holocene climate variability in the Atlantic sector of the Southern Ocean[J]. Quaternary Science Reviews, 2016, 135: 115−137. doi: 10.1016/j.quascirev.2016.01.023
    [12]
    Xiao Wenshen, Frederichs T, Gersonde R, et al. Constraining the dating of late Quaternary marine sediment records from the Scotia Sea (Southern Ocean)[J]. Quaternary Geochronology, 2016, 31: 97−118. doi: 10.1016/j.quageo.2015.11.003
    [13]
    Weber M E, Bailey I, Hemming S R, et al. Antiphased dust deposition and productivity in the Antarctic Zone over 1.5 million years[J]. Nature Communications, 2022, 13(1): 2044. doi: 10.1038/s41467-022-29642-5
    [14]
    Shin J Y, Kim S, Zhao Xiang, et al. Particle-size dependent magnetic properties of Scotia Sea sediments since the Last Glacial Maximum: glacial ice-sheet discharge controlling magnetic proxies[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 557: 109906. doi: 10.1016/j.palaeo.2020.109906
    [15]
    Pérez L F, Lodolo E, Maldonado A, et al. Tectonic development, sedimentation and paleoceanography of the Scan Basin (southern Scotia Sea, Antarctica)[J]. Global and Planetary Change, 2014, 123: 344−358. doi: 10.1016/j.gloplacha.2014.06.007
    [16]
    Orsi A H, Johnson G C, Bullister J L. Circulation, mixing, and production of Antarctic Bottom Water[J]. Progress in Oceanography, 1999, 43(1): 55−109. doi: 10.1016/S0079-6611(99)00004-X
    [17]
    Shevenell A E, Ingalls A E, Domack E W, et al. Holocene Southern Ocean surface temperature variability west of the Antarctic Peninsula[J]. Nature, 2011, 470(7333): 250−254. doi: 10.1038/nature09751
    [18]
    Palmer M, Gomis D, del Mar Flexas M, et al. Water mass pathways and transports over the South Scotia Ridge west of 50°W[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2012, 59: 8−24. doi: 10.1016/j.dsr.2011.10.005
    [19]
    Jiang Mingshun, Charette M A, Measures C I, et al. Seasonal cycle of circulation in the Antarctic Peninsula and the off-shelf transport of shelf waters into southern Drake Passage and Scotia Sea[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2013, 90: 15−30. doi: 10.1016/j.dsr2.2013.02.029
    [20]
    Holm-Hansen O, Naganobu M, Kawaguchi S, et al. Factors influencing the distribution, biomass, and productivity of phytoplankton in the Scotia Sea and adjoining waters[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2004, 51(12/13): 1333−1350.
    [21]
    Korb R E, Whitehouse M J, Ward P, et al. Regional and seasonal differences in microplankton biomass, productivity, and structure across the Scotia Sea: implications for the export of biogenic carbon[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2012, 59−60: 67−77. doi: 10.1016/j.dsr2.2011.06.006
    [22]
    Weber M E, Clark P U, Kuhn G, et al. Millennial-scale variability in Antarctic ice-sheet discharge during the last deglaciation[J]. Nature, 2014, 510(7503): 134−138. doi: 10.1038/nature13397
    [23]
    杨春丽, 陈志华, 肖文申, 等. 3.4万年以来南极斯科舍海古生产力演变及其环境制约[J]. 海洋学报, 2021, 43(3): 116−125.

    Yang Chunli, Chen Zhihua, Xiao Wenshen, et al. Paleoproductivity and its environmental constraints in the Scotia Sea, Antarctica since 34 ka BP[J]. Haiyang Xuebao, 2021, 43(3): 116−125.
    [24]
    Taylor S R, McLennan S M. The Continental Crust: its Composition and Evolution[M]. Oxford: Blackwell, 1985: 1−312.
    [25]
    WAIS Divide Project Members. Onset of deglacial warming in West Antarctica driven by local orbital forcing[J]. Nature, 2013, 500(7463): 440−444. doi: 10.1038/nature12376
    [26]
    Lee J I, Park B K, Jwa Y J, et al. Geochemical characteristics and the provenance of sediments in the Bransfield Strait, West Antarctica[J]. Marine Geology, 2005, 219(2/3): 81−98.
    [27]
    Dubinin A V, Rimskaya-Korsakova M N. Geochemistry of rare earth elements in bottom sediments of the Brazil Basin, Atlantic Ocean[J]. Lithology and Mineral Resources, 2011, 46(1): 1−16. doi: 10.1134/S0024490211010032
    [28]
    Elderfield H, Hawkesworth C J, Greaves M J, et al. Rare earth element geochemistry of oceanic ferromanganese nodules and associated sediments[J]. Geochimica et Cosmochimica Acta, 1981, 45(4): 513−528. doi: 10.1016/0016-7037(81)90184-8
    [29]
    陈志华, 黄元辉, 唐正, 等. 南极半岛东北部海域表层沉积物稀土元素特征及物源指示意义[J]. 海洋地质与第四纪地质, 2015, 35(3): 145−155.

    Chen Zhihua, Huang Yuanhui, Tang Zheng, et al. Rare earth elements in the offshore surface sediments of the northeastern Antarctic Peninsula and their implications for provenance[J]. Marine Geology & Quaternary Geology, 2015, 35(3): 145−155.
    [30]
    Freslon N, Bayon G, Toucanne S, et al. Rare earth elements and neodymium isotopes in sedimentary organic matter[J]. Geochimica et Cosmochimica Acta, 2014, 140: 177−198. doi: 10.1016/j.gca.2014.05.016
    [31]
    Levitan M A, Girin Y P, Luksha V L, et al. Modern sedimentation system of Lake Untersee, East Antarctica[J]. Geochemistry International, 2011, 49(5): 459−481. doi: 10.1134/S0016702911050077
    [32]
    Gallet S, Jahn B, Van Vliet Lanoë B, et al. Loess geochemistry and its implications for particle origin and composition of the upper continental crust[J]. Earth and Planetary Science Letters, 1998, 156(3/4): 157−172.
    [33]
    Piper D Z. Rare earth elements in ferromanganese nodules and other marine phases[J]. Geochimica et Cosmochimica Acta, 1974, 38(7): 1007−1022. doi: 10.1016/0016-7037(74)90002-7
    [34]
    孟妍, 伏美燕. 去除有机质前后海底沉积物对稀土元素吸附能力的变化研究[J]. 热带海洋学报, 2006, 25(4): 20−24.

    Meng Yan, Fu Meiyan. Capacity change of marine sediments with and without organic matter for absorption of rare earth elements[J]. Journal of Tropical Oceanography, 2006, 25(4): 20−24.
    [35]
    Pourret O, Davranche M, Gruau G, et al. New insights into cerium anomalies in organic-rich alkaline waters[J]. Chemical Geology, 2008, 251(1/4): 120−127.
    [36]
    王中刚, 于学元, 赵振华, 等. 稀土元素地球化学[M]. 北京: 科学出版社, 1989.

    Wang Zhonggang, Yu Xueyuan, Zhao Zhenhua, et al. REE Geochemistry[M]. Beijing: Science Press, 1989.
    [37]
    Bhatia M R, Crook K A W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J]. Contributions to Mineralogy and Petrology, 1986, 92(2): 181−193. doi: 10.1007/BF00375292
    [38]
    郑光高, 刘晓春, 赵越. 南极半岛中新生代构造岩浆演化及与南美巴塔哥尼亚对比[J]. 矿物岩石地球化学通报, 2015, 34(6): 1090−1102.

    Zheng Guanggao, Liu Xiaochun, Zhao Yue. Mesozoic-Cenozoic tectonomagmatic evolution of the Antarctic peninsula and its correlation with Patagonia of southernmost South America[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(6): 1090−1102.
    [39]
    郑光高, 刘晓春, 赵越, 等. 西南极岩浆作用及构造演化[J]. 地质力学学报, 2021, 27(5): 821−834.

    Zheng Guanggao, Liu Xiaochun, Zhao Yue, et al. Magmatism and tectonic evolution of West Antarctica[J]. Journal of Geomechanics, 2021, 27(5): 821−834.
    [40]
    Diekmann B, Kuhn G. Provenance and dispersal of glacial-marine surface sediments in the Weddell Sea and adjoining areas, Antarctica: ice-rafting versus current transport[J]. Marine Geology, 1999, 158(1/4): 209−231.
    [41]
    Gaiero D M, Depetris P J, Probst J L, et al. The signature of river- and wind-borne materials exported from Patagonia to the southern latitudes: a view from REEs and implications for paleoclimatic interpretations[J]. Earth and Planetary Science Letters, 2004, 219(3/4): 357−376.
    [42]
    Walter H J, Hegner E, Diekmann B, et al. Provenance and transport of terrigenous sediment in the South Atlantic Ocean and their relations to glacial and interglacial cycles: Nd and Sr isotopic evidence[J]. Geochimica et Cosmochimica Acta, 2000, 64(22): 3813−3827. doi: 10.1016/S0016-7037(00)00476-2
    [43]
    Gaiero D M, Probst J L, Depetris P J, et al. Iron and other transition metals in Patagonian riverborne and windborne materials: geochemical control and transport to the southern South Atlantic Ocean[J]. Geochimica et Cosmochimica Acta, 2003, 67(19): 3603−3623. doi: 10.1016/S0016-7037(03)00211-4
    [44]
    Martínez-Garcia A, Rosell-Melé A, Jaccard S L, et al. Southern Ocean dust- climate coupling over the past four million years[J]. Nature, 2011, 476(7360): 312−315. doi: 10.1038/nature10310
    [45]
    Wolff E W, Fischer H, Fundel F, et al. Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles[J]. Nature, 2006, 440(7083): 491−496. doi: 10.1038/nature04614
    [46]
    Fischer H, Fundel F, Ruth U, et al. Reconstruction of millennial changes in dust emission, transport and regional sea ice coverage using the deep EPICA ice cores from the Atlantic and Indian Ocean sector of Antarctica[J]. Earth and Planetary Science Letters, 2007, 260(1/2): 340−354.
    [47]
    赵一阳, 鄢明才. 中国浅海沉积物地球化学[M]. 北京: 科学出版社, 1994: 130−150.

    Zhao Yiyang, Yan Mingcai. Geochemistry of Sediments of the China Shelf Sea[M]. Beijing: Science Press, 1994: 130−150.
    [48]
    Diekmann B. Sedimentary patterns in the late Quaternary Southern Ocean[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2007, 54(21/22): 2350−2366.
    [49]
    Wang Haozhuang, Chen Zhihua, Wang Kunshan, et al. Characteristics of heavy minerals and grain size of surface sediments on the continental shelf of Prydz Bay: implications for sediment provenance[J]. Antarctic Science, 2016, 28(2): 103−114. doi: 10.1017/S0954102015000498
    [50]
    Garçon M, Chauvel C, France-Lanord C, et al. Which minerals control the Nd–Hf–Sr–Pb isotopic compositions of river sediments?[J]. Chemical Geology, 2014, 364: 42−55. doi: 10.1016/j.chemgeo.2013.11.018
    [51]
    Baccolo G, Delmonte B, Albani S, et al. Regionalization of the atmospheric dust cycle on the periphery of the East Antarctic ice sheet since the Last Glacial Maximum[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(9): 3540−3554. doi: 10.1029/2018GC007658
    [52]
    Kim S, Yoo K C, Lee J I, et al. Relationship between magnetic susceptibility and sediment grain size since the last glacial period in the Southern Ocean off the northern Antarctic Peninsula-Linkages between the cryosphere and atmospheric circulation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 505: 359−370. doi: 10.1016/j.palaeo.2018.06.016
    [53]
    Liu Qingsong, Torrent J, Morrás H, et al. Superparamagnetism of two modern soils from the northeastern Pampean region, Argentina and its paleoclimatic indications[J]. Geophysical Journal International, 2010, 183(2): 695−705. doi: 10.1111/j.1365-246X.2010.04786.x
    [54]
    Anderson J B, Shipp S S, Lowe A L, et al. The Antarctic Ice Sheet during the Last Glacial Maximum and its subsequent retreat history: a review[J]. Quaternary Science Reviews, 2002, 21(1/3): 49−70.
    [55]
    Cofaigh C Ó, Davies B J, Livingstone S J, et al. Reconstruction of ice-sheet changes in the Antarctic Peninsula since the Last Glacial Maximum[J]. Quaternary Science Reviews, 2014, 100: 87−110. doi: 10.1016/j.quascirev.2014.06.023
    [56]
    Reinardy B T I, Pudsey C J, Hillenbrand C D, et al. Contrasting sources for glacial and interglacial shelf sediments used to interpret changing ice flow directions in the Larsen Basin, Northern Antarctic Peninsula[J]. Marine Geology, 2009, 266(1/4): 156−171.
    [57]
    Kohfeld K E, Graham R M, de Boer A M, et al. Southern Hemisphere westerly wind changes during the Last Glacial Maximum: paleo-data synthesis[J]. Quaternary Science Reviews, 2013, 68: 76−95. doi: 10.1016/j.quascirev.2013.01.017
    [58]
    Sugden D E, McCulloch R D, Bory A J M, et al. Influence of Patagonian glaciers on Antarctic dust deposition during the last glacial period[J]. Nature Geoscience, 2009, 2(4): 281−285. doi: 10.1038/ngeo474
    [59]
    Toggweiler J R, Russell J. Ocean circulation in a warming climate[J]. Nature, 2008, 451(7176): 286−288. doi: 10.1038/nature06590
    [60]
    Heroy D C, Anderson J B. Radiocarbon constraints on Antarctic Peninsula ice sheet retreat following the Last Glacial Maximum (LGM)[J]. Quaternary Science Reviews, 2007, 26(25/28): 3286−3297.
    [61]
    Graham A G C, Smith J A. Palaeoglaciology of the Alexander Island ice cap, western Antarctic Peninsula, reconstructed from marine geophysical and core data[J]. Quaternary Science Reviews, 2012, 35: 63−81. doi: 10.1016/j.quascirev.2012.01.008
    [62]
    Mendelová M, Hein A S, Rodés A, et al. Glacier expansion in central Patagonia during the Antarctic Cold Reversal followed by retreat and stabilisation during the Younger Dryas[J]. Quaternary Science Reviews, 2020, 227: 106047. doi: 10.1016/j.quascirev.2019.106047
    [63]
    Lamping N, Müller J, Esper O, et al. Highly branched isoprenoids reveal onset of deglaciation followed by dynamic sea-ice conditions in the western Amundsen Sea, Antarctica[J]. Quaternary Science Reviews, 2020, 228: 106103. doi: 10.1016/j.quascirev.2019.106103
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article views (242) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return