Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 45 Issue 8
Aug.  2023
Turn off MathJax
Article Contents
He Xiangxiang,Jiang Wei,Liu Lingdan, et al. Distribution coefficients of trace elements between Merulinidae coral aragonite skeletons and seawater in the Weizhou Island, the northern South China Sea: Species and Rayleigh dependencies[J]. Haiyang Xuebao,2023, 45(8):62–72 doi: 10.12284/hyxb2023098
Citation: He Xiangxiang,Jiang Wei,Liu Lingdan, et al. Distribution coefficients of trace elements between Merulinidae coral aragonite skeletons and seawater in the Weizhou Island, the northern South China Sea: Species and Rayleigh dependencies[J]. Haiyang Xuebao,2023, 45(8):62–72 doi: 10.12284/hyxb2023098

Distribution coefficients of trace elements between Merulinidae coral aragonite skeletons and seawater in the Weizhou Island, the northern South China Sea: Species and Rayleigh dependencies

doi: 10.12284/hyxb2023098
  • Received Date: 2023-01-09
  • Rev Recd Date: 2023-03-31
  • Available Online: 2023-08-18
  • Publish Date: 2023-08-31
  • The distribution process of trace elements between coral aragonite skeletons and seawater is a key link to control the incorporating of trace elements in seawater into coral skeletons. The distribution coefficient (KD) characterizing this distribution process is often used to reconstruct the contents of trace elements in seawater in time series. Lacking of in situ research on corals and seawater, the limited knowledge related to the distribution behavior of trace elements between coral aragonite skeletons and seawater seriously hindered our acquisition of accurate chemical quantitative data on seawater. In this study we selected two typical reef-building coral species (Goniastrea retiformis and Platygyra yaeyamaensis) and five trace elements (Cu, Zn, Pb, Cd and Cr) in the surrounding in-situ surface seawater of Weizhou Island in the northern South China Sea, and estimated the distribution coefficients of these trace elements between the coral aragonite skeleton and seawater. Results revealed that the KD value of G. retiformis for Cu, Zn, Pb, Cd, Cr was 3.65, 0.57, 1.06, 0.88, 0.66 respectively; the KD value of P. yaeyamaensis was 3.49, 0.97, 1.42, 1.01, 0.60 respectively. We found a significant difference among different coral species in the KD values of Cu, Zn, Pb and Cd, but no significant difference for Cr. The results indicate that the KD values of trace elements are affected by the Rayleigh fractionation, which is related to the numerical values of KD. The study provided relatively accurate KD values for coral aragonite skeleton and seawater, represented important basic data for future research on coral reefs, and expanded our knowledge of chemical signature in biogenic lattices associated with marine organism.
  • loading
  • [1]
    Forget G, Ferreira D. Global ocean heat transport dominated by heat export from the tropical Pacific[J]. Nature Geoscience, 2019, 12(5): 351−354. doi: 10.1038/s41561-019-0333-7
    [2]
    Gagan M K, Ayliffe L K, Beck J W, et al. New views of tropical paleoclimates from corals[J]. Quaternary Science Reviews, 2000, 19(1/5): 45−64.
    [3]
    Thompson D M. Environmental records from coral skeletons: a decade of novel insights and innovation[J]. WIRES Climate Change, 2022, 13(1): e745.
    [4]
    Saha N, Webb G E, Zhao J X. Coral skeletal geochemistry as a monitor of inshore water quality[J]. Science of the Total Environment, 2016, 566–567: 652−684. doi: 10.1016/j.scitotenv.2016.05.066
    [5]
    Yu Kefu. Coral reefs in the South China Sea: their response to and records on past environmental changes[J]. Science China Earth Sciences, 2012, 55(8): 1217−1229. doi: 10.1007/s11430-012-4449-5
    [6]
    Shen G T. Lead and cadmium geochemistry of corals: reconstruction of historic perturbations in the upper ocean[D]. Cambridge, Mass, United States: Massachusetts Institute of Technology, 1986.
    [7]
    Shen G T, Boyle E A. Determination of lead, cadmium and other trace metals in annually-banded corals[J]. Chemical Geology, 1988, 67(1/2): 47−62.
    [8]
    Sholkovitz E, Shen G T. The incorporation of rare earth elements in modern coral[J]. Geochimica et Cosmochimica Acta, 1995, 59(13): 2749−2756. doi: 10.1016/0016-7037(95)00170-5
    [9]
    Wyndham T, McCulloch M, Fallon S, et al. High-resolution coral records of rare earth elements in coastal seawater: biogeochemical cycling and a new environmental proxy[J]. Geochimica et Cosmochimica Acta, 2004, 68(9): 2067−2080. doi: 10.1016/j.gca.2003.11.004
    [10]
    Barnard L A, Macintyre I G, Pierce J W. Possible environmental index in tropical reef corals[J]. Nature, 1974, 252(5480): 219−220. doi: 10.1038/252219a0
    [11]
    Hanna R G, Muir G L. Red sea corals as biomonitors of trace metal pollution[J]. Environmental Monitoring and Assessment, 1990, 14(2/3): 211−222.
    [12]
    Shen G T, Boyle E A. Lead in corals: reconstruction of historical industrial fluxes to the surface ocean[J]. Earth and Planetary Science Letters, 1987, 82(3/4): 289−304.
    [13]
    Kelly A E, Reuer M K, Goodkin N F, et al. Lead concentrations and isotopes in corals and water near Bermuda, 1780–2000[J]. Earth and Planetary Science Letters, 2009, 283(1/4): 93−100.
    [14]
    Quinby-Hunt M S, Turehian K K. Distribution of elements in sea water[J]. Eos, Transactions American Geophysical Union, 1983, 64(14): 130. doi: 10.1029/EO064i014p00130
    [15]
    Liu Yi, Li Xiaohua, Zeng Zhen, et al. Annually-resolved coral skeletal δ138/134Ba records: a new proxy for oceanic Ba cycling[J]. Geochimica et Cosmochimica Acta, 2019, 247: 27−39. doi: 10.1016/j.gca.2018.12.022
    [16]
    Zhang Ting, Sun Ruoyu, Liu Yi, et al. Copper and Zinc isotope signatures in scleratinian corals: implications for Cu and Zn cycling in modern and ancient ocean[J]. Geochimica et Cosmochimica Acta, 2022, 317: 395−408. doi: 10.1016/j.gca.2021.10.014
    [17]
    Linn L J, Delaney M L, Druffel E R M. Trace metals in contemporary and seventeenth-century Galapagos coral: records of seasonal and annual variations[J]. Geochimica et Cosmochimica Acta, 1990, 54(2): 387−394. doi: 10.1016/0016-7037(90)90327-H
    [18]
    Livingston H D, Thompson G. Trace element concentrations in some modern corals[J]. Limnology and Oceanography, 1971, 16(5): 786−796. doi: 10.4319/lo.1971.16.5.0786
    [19]
    Shen G T, Sanford C L. Trace element indicators of climate variability in reef-building corals[J]. Elsevier Oceanography Series, 1990, 52: 255−283.
    [20]
    Grottoli A G, Matthews K A, Palardy J E, et al. High resolution coral Cd measurements using LA-ICP-MS and ID-ICP-MS: calibration and interpretation[J]. Chemical Geology, 2013, 356: 151−159. doi: 10.1016/j.chemgeo.2013.08.024
    [21]
    Jiang Wei, Yu Kefu, Wang Ning, et al. Distribution coefficients of trace metals between modern coral-lattices and seawater in the northern South China Sea: species and SST dependencies[J]. Journal of Asian Earth Sciences, 2020, 187: 104082. doi: 10.1016/j.jseaes.2019.104082
    [22]
    Sadler J, Webb G E, Nothdurft L D, et al. Geochemistry-based coral palaeoclimate studies and the potential of ‘non-traditional’ (non-massive Porites) corals: recent developments and future progression[J]. Earth-Science Reviews, 2014, 139: 291−316. doi: 10.1016/j.earscirev.2014.10.002
    [23]
    樊祺诚, 孙谦, 龙安明, 等. 北部湾涠洲岛及斜阳岛火山地质与喷发历史研究[J]. 岩石学报, 2006, 22(6): 1529−1537. doi: 10.3321/j.issn:1000-0569.2006.06.011

    Fan Qicheng, Sun Qian, Long Anming, et al. Geology and eruption history of volcanoes in Weizhou Island and Xieyang Island, Northern Bay[J]. Acta Petrologica Sinica, 2006, 22(6): 1529−1537. doi: 10.3321/j.issn:1000-0569.2006.06.011
    [24]
    王文欢, 余克服, 王英辉. 北部湾涠洲岛珊瑚礁的研究历史、现状与特色[J]. 热带地理, 2016, 36(1): 72−79. doi: 10.13284/j.cnki.rddl.002806

    Wang Wenhuan, Yu Kefu, Wang Yinghui. A review on the research of coral reefs in the Weizhou Island, Beibu Gulf[J]. Tropical Geography, 2016, 36(1): 72−79. doi: 10.13284/j.cnki.rddl.002806
    [25]
    黄林韬, 黄晖, 江雷. 中国造礁石珊瑚分类厘定[J]. 生物多样性, 2020, 28(4): 515−523. doi: 10.17520/biods.2019384

    Huang Lintao, Huang Hui, Jiang Lei. A revised taxonomy for Chinese hermatypic corals[J]. Biodiversity Science, 2020, 28(4): 515−523. doi: 10.17520/biods.2019384
    [26]
    Hoeksema B W, Cairns S. World list of scleractinia, 2020[EB/OL]. [2023−01−01]. http://www.marinespecies.org/aphia.php?p=taxdetails&id=1363.
    [27]
    杨华, 王少鹏, 余克服, 等. 南海北部珊瑚生长区海水重金属污染特征[J]. 生态环境学报, 2017, 26(2): 253−260. doi: 10.16258/j.cnki.1674-5906.2017.02.010

    Yang Hua, Wang Shaopeng, Yu Kefu, et al. Pollution characteristics of heavy metals in seawater of coral growing regions in the northern South China Sea[J]. Ecology and Environmental Sciences, 2017, 26(2): 253−260. doi: 10.16258/j.cnki.1674-5906.2017.02.010
    [28]
    Xie Sirong, Jiang Wei, Sun Yinan, et al. Interannual variation and sources identification of heavy metals in seawater near shipping lanes: evidence from a coral record from the northern South China Sea[J]. Science of the Total Environment, 2022, 854: 158755.
    [29]
    王宁, 余克服, 王英辉, 等. 涠洲岛珊瑚骨骼重金属水平及其生物富集效应[J]. 广西大学学报(自然科学版), 2019, 44(2): 570−579. doi: 10.13624/j.cnki.issn.1001-7445.2019.0570

    Wang Ning, Yu Kefu, Wang Yinghui, et al. Concentrations and bioaccumulation effects of heavy metals in coral skeletons from Weizhou Island[J]. Journal of Guangxi University (Natural Science Edition), 2019, 44(2): 570−579. doi: 10.13624/j.cnki.issn.1001-7445.2019.0570
    [30]
    彭加喜, 刘金铃, 徐向荣, 等. 西沙永兴岛珊瑚重金属水平及其富集效应[J]. 海洋环境科学, 2014, 33(6): 848−853. doi: 10.13634/j.cnki.mes.2014.06.006

    Peng Jiaxi, Liu Jinling, Xu Xiangrong, et al. Heavy metal levels in coral skeletons from Yongxing Island and their enrichment effects[J]. Marine Environmental Science, 2014, 33(6): 848−853. doi: 10.13634/j.cnki.mes.2014.06.006
    [31]
    Song Yinxian, Yu Kefu, Zhao Jianxin, et al. Past 140-year environmental record in the northern South China Sea: evidence from coral skeletal trace metal variations[J]. Environmental Pollution, 2014, 185: 97−106. doi: 10.1016/j.envpol.2013.10.024
    [32]
    彭子成, 刘军华, 刘桂建, 等. 广东省电白县大放鸡岛滨珊瑚的重金属含量及其意义[J]. 海洋地质动态, 2003, 19(11): 5−12. doi: 10.3969/j.issn.1009-2722.2003.11.002

    Peng Zicheng, Liu Junhua, Liu Guijian, et al. Interannual variability of the heavy metal contents in the porites lutea coral from Dafangji Island of Dianbai county and their implications[J]. Marine Geology Letters, 2003, 19(11): 5−12. doi: 10.3969/j.issn.1009-2722.2003.11.002
    [33]
    Mokhtar M B, Praveena S M, Aris A Z, et al. Trace metal (Cd, Cu, Fe, Mn, Ni and Zn) accumulation in Scleractinian corals: a record for Sabah, Borneo[J]. Marine Pollution Bulletin, 2012, 64(11): 2556−2563. doi: 10.1016/j.marpolbul.2012.07.030
    [34]
    徐轶肖, 谢谊, 赵鹏, 等. 北部湾涠洲岛海水重金属污染现状研究[J]. 生态环境学报, 2018, 27(5): 908−915. doi: 10.16258/j.cnki.1674-5906.2018.05.016

    Xu Yixiao, Xie Yi, Zhao Peng, et al. Heavy metal pollution of seawater in Weizhou Island, Beibu Gulf of Guangxi[J]. Ecology and Environmental Sciences, 2018, 27(5): 908−915. doi: 10.16258/j.cnki.1674-5906.2018.05.016
    [35]
    Akagi T, Hashimoto Y, Fu Fengfu, et al. Variation of the distribution coefficients of rare earth elements in modern coral-lattices: species and site dependencies[J]. Geochimica et Cosmochimica Acta, 2004, 68(10): 2265−2273. doi: 10.1016/j.gca.2003.12.014
    [36]
    Reuer M K, Boyle E A, Cole J E. A mid-twentieth century reduction in tropical upwelling inferred from coralline trace element proxies[J]. Earth and Planetary Science Letters, 2003, 210(3/4): 437−452.
    [37]
    Nothdurft L D, Webb G E, Kamber B S. Rare earth element geochemistry of Late Devonian reefal carbonates, Canning Basin, western Australia: confirmation of a seawater REE proxy in ancient limestones[J]. Geochimica et Cosmochimica Acta, 2004, 68(2): 263−283. doi: 10.1016/S0016-7037(03)00422-8
    [38]
    Zhong Shaojun, Mucci A. Partitioning of rare earth elements (REEs) between calcite and seawater solutions at 25°C and 1 atm, and high dissolved REE concentrations[J]. Geochimica et Cosmochimica Acta, 1995, 59(3): 443−453. doi: 10.1016/0016-7037(94)00381-U
    [39]
    Kuffner I B, Jokiel P L, Rodgers K S, et al. An apparent “vital effect” of calcification rate on the Sr/Ca temperature proxy in the reef coral Montipora capitata[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(8): Q08004.
    [40]
    Gaetani G A, Cohen A L. Element partitioning during precipitation of aragonite from seawater: a framework for understanding paleoproxies[J]. Geochimica et Cosmochimica Acta, 2006, 70(18): 4617−4634. doi: 10.1016/j.gca.2006.07.008
    [41]
    Gagnon A C, Adkins J F, Erez J. Seawater transport during coral biomineralization[J]. Earth and Planetary Science Letters, 2012, 329−330: 150−161. doi: 10.1016/j.jpgl.2012.03.005
    [42]
    Inoue M, Gussone N, Koga Y, et al. Controlling factors of Ca isotope fractionation in scleractinian corals evaluated by temperature, pH and light controlled culture experiments[J]. Geochimica et Cosmochimica Acta, 2015, 167: 80−92. doi: 10.1016/j.gca.2015.06.009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article views (249) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return