Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 45 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
Li Qianqian,Wang Ziwen,Zhu Jinlong, et al. Temperature profile inversion in the South China Sea under the constraint of depth-fixed temperature[J]. Haiyang Xuebao,2023, 45(7):126–136 doi: 10.12284/hyxb2023097
Citation: Li Qianqian,Wang Ziwen,Zhu Jinlong, et al. Temperature profile inversion in the South China Sea under the constraint of depth-fixed temperature[J]. Haiyang Xuebao,2023, 45(7):126–136 doi: 10.12284/hyxb2023097

Temperature profile inversion in the South China Sea under the constraint of depth-fixed temperature

doi: 10.12284/hyxb2023097
  • Received Date: 2022-10-20
  • Rev Recd Date: 2023-01-07
  • Available Online: 2023-07-31
  • Publish Date: 2023-07-01
  • In order to quickly obtain a large-scale, quasi-real-time internal structure of the ocean, sea surface remote sensing data are widely used to construct the vertical structure of the temperature profiles, but satellite remote sensing can only obtain relatively accurate ocean surface or near-surface data. In order to improve the accuracy of temperature profile inversion, this paper takes the depth-fixed temperature as the constraint, and the nonlinear mapping between the temperature profiles and the sea surface remote sensing data such as sea surface temperature (SST) and sea level anomaly (SLA) is generated through the radial basis function (RBF) neural network, and discuss the theoretical basis for constrained depth selection. The inversion results of the temperature profiles in the South China Sea show that the first empirical orthogonal function (EOF) coefficient can characterize the vertical displacement of the thermocline. And there is a strong correlation between the temperature at the depth corresponding to the extreme point of the first EOF and the first EOF coefficient. Therefore, when the temperature at this depth is added as a constraint, the inversion accuracy of the thermocline is about 0.35℃ higher than that of only using sea surface remote sensing data, and the mean root mean square error of temperature profile inversion is about 0.33℃.
  • loading
  • [1]
    修树孟, 张钦, 逄爱梅. 卫星遥感SST反演海水温度垂直剖面的方法研究[J]. 遥感信息, 2009(5): 73−76.

    Xiu Shumeng, Zhang Qin, Pang Aimei. Asimulation of the seawater temperature vertical profile from satellite SST observation[J]. Remote Sensing Information, 2009(5): 73−76.
    [2]
    Li Haipeng, Qu Ke, Zhou Jianbo. Reconstructing sound speed profile from remote sensing data: nonlinear inversion based on self-organizing map[J]. IEEE Access, 2021, 9: 109754−109762.
    [3]
    Guinehut S, Le Traon P Y, Larnicol G, et al. Combining Argo and remote-sensing data to estimate the ocean three-dimensional temperature fields—A first approach based on simulated observations[J]. Journal of Marine Systems, 2004, 46(1/4): 85−98.
    [4]
    Fujii Y, Kamachi M. Three-dimensional analysis of temperature and salinity in the equatorial Pacific using a variational method with vertical coupled temperature-salinity empirical orthogonal function modes[J]. Journal of Geophysical Research: Oceans, 2003, 108(C9): 3297. doi: 10.1029/2002JC001745
    [5]
    邢霄波, 徐永生, 贾永君, 等. 基于遥感数据的三维温度场参数化分析方法研究[J]. 海洋学报, 2020, 42(11): 39−48.

    Xing Xiaobo, Xu Yongsheng, Jia Yongjun, et al. Research on parameterized analysis method of 3D temperature field based on remote sensing data[J]. Haiyang Xuebao, 2020, 42(11): 39−48.
    [6]
    Lapeyre G, Klein P. Dynamics of the upper oceanic layers in terms of surface quasigeostrophy theory[J]. Journal of Physical Oceanography, 2006, 36(2): 165−176. doi: 10.1175/JPO2840.1
    [7]
    Lu Wenfang, Su Hua, Yang Xin, et al. Subsurface temperature estimation from remote sensing data using a clustering-neural network method[J]. Remote Sensing of Environment, 2019, 229: 213−222. doi: 10.1016/j.rse.2019.04.009
    [8]
    Munk W, Wunsch C. Ocean acoustic tomography: a scheme for large scale monitoring[J]. Deep-Sea Research Part A. Oceanographic Research Papers, 1979, 26(2): 123−161. doi: 10.1016/0198-0149(79)90073-6
    [9]
    Sagen H, Dushaw B D, Skarsoulis E K, et al. Time series of temperature in Fram Strait determined from the 2008–2009 DAMOCLES acoustic tomography measurements and an ocean model[J]. Journal of Geophysical Research: Oceans, 2016, 121(7): 4601−4617. doi: 10.1002/2015JC011591
    [10]
    廖光洪, 朱小华, 林巨, 等. 海洋声层析观测技术和方法[J]. 海洋学报, 2010, 32(3): 14−22.

    Liao Guanghong, Zhu Xiaohua, Lin Ju, et al. Observation technology and methods of ocean acoustic tomography[J]. Haiyang Xuebao, 2010, 32(3): 14−22.
    [11]
    Melo J, Matos A. Guidance and control of an ASV in AUV tracking operations[C]//OCEANS 2008. Quebec City, QC, Canada: IEEE, 2008: 1−7.
    [12]
    Liu Chuan, Xiang Xianbo, Yang Lichun, et al. A hierarchical disturbance rejection depth tracking control of underactuated AUV with experimental verification[J]. Ocean Engineering, 2022, 264: 112458. doi: 10.1016/j.oceaneng.2022.112458
    [13]
    Xu Hao, Zhang Guocheng, Sun Yushan, et al. Design and experiment of a plateau data-gathering AUV[J]. Journal of Marine Science and Engineering, 2019, 7(10): 376. doi: 10.3390/jmse7100376
    [14]
    孙春健, 张晓爽, 张寅权, 等. 卫星遥感重构海洋次表层研究进展[J]. 海洋信息, 2018, 33(4): 21−28. doi: 10.19661/j.cnki.mi.2018.04.004

    Sun Chunjian, Zhang Xiaoshuang, Zhang Yinquan, et al. Progress in reconstruction of ocean subsurface by satellite remote sensing data[J]. Marine Information, 2018, 33(4): 21−28. doi: 10.19661/j.cnki.mi.2018.04.004
    [15]
    Yu Siyuan, Wu Wenhua, Xie Bin, et al. Extreme value prediction of current profiles in the South China Sea based on EOFs and the ACER method[J]. Applied Ocean Research, 2020, 105: 102408. doi: 10.1016/j.apor.2020.102408
    [16]
    Moody J, Darken C J. Fast learning in networks of locally-tuned processing units[J]. Neural Computation, 1989, 1(2): 281−294. doi: 10.1162/neco.1989.1.2.281
    [17]
    Reynolds R W, Smith T M, Liu Chunying, et al. Daily high-resolution-blended analyses for sea surface temperature[J]. Journal of Climate, 2007, 20(22): 5473−5496. doi: 10.1175/2007JCLI1824.1
    [18]
    AVISO. SSALTO/DUACS User Handbook: (M)SLA and (M)ADT Near-real Time and Delayed Time Products[M]. Paris: CNES, 2012.
    [19]
    徐超, 李莎, 陈荣裕, 等. 2009−2012年南海海洋断面科学考察CTD温盐观测数据集[J]. 中国科学数据, 2016(3): 13−18.

    Xu Chao, Li Sha, Chen Rongyu, et al. CTD observation dataset of scientific investigation over the South China Sea (2009−2012)[J]. China Scientific Data, 2016(3): 13−18.
    [20]
    钟玮琪, 屈科, 梁羿. 基于经验正交函数的剖面重构及其物理意义分析[J]. 海洋技术学报, 2022, 41(1): 57−64. doi: 10.3969/j.issn.1003-2029.2022.01.008

    Zhong Weiqi, Qu Ke, Liang Yi. Profile reconstruction based on empirical orthogonal function and its physical meaning analysis[J]. Ocean Technology, 2022, 41(1): 57−64. doi: 10.3969/j.issn.1003-2029.2022.01.008
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Article views (279) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return