Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 45 Issue 8
Aug.  2023
Turn off MathJax
Article Contents
Wang Hui,Quan Mengyuan,Xu Weiqing, et al. Sea level rise projection in China’s coastal and offshore areas[J]. Haiyang Xuebao,2023, 45(8):1–10 doi: 10.12284/hyxb2023096
Citation: Wang Hui,Quan Mengyuan,Xu Weiqing, et al. Sea level rise projection in China’s coastal and offshore areas[J]. Haiyang Xuebao,2023, 45(8):1–10 doi: 10.12284/hyxb2023096

Sea level rise projection in China’s coastal and offshore areas

doi: 10.12284/hyxb2023096
  • Received Date: 2022-11-28
  • Rev Recd Date: 2023-03-30
  • Available Online: 2023-08-31
  • Publish Date: 2023-08-31
  • Using tide gauge observation, satellite altimeter data, and the result of 10 CMIP6 Earth System Models with good simulation performance, the long-term trend of sea level change in China, and predicts the range of sea level rise in the future are analyzed in this study. The results show that: (1) from 1960 to 2021, the sea level in China’s coastal areas showed an accelerated rising trend, with a rise rate of 2.5 mm/a and an acceleration of 0.06 mm/a2. From 1993 to 2021, the rise rate was 4.0 mm/a, higher than the global rate of 3.3 mm/a in the same period. (2) From 1980 to 2021, the sea level rise rates of the Bohai Sea and the Yellow Sea, the East China Sea and the South China Sea were 3.5 mm/a, 3.3 mm/a and 3.6 mm/a, respectively. The sea level rise rates of the Bohai Sea and the Yellow Sea, the South China Sea were relatively fast, while the sea level rise rates of East China Sea was slow. The coastal sea level rose slowly from 1960s to 1970s, and accelerated after 1980s in the Bohai Sea and the Yellow Sea. (3) Under the medium (SSP2-4.5) and high (SSP5-8.5) scenarios, China’s offshore sea level will rise by 0.22 m (0.19−0.28 m) and 0.24 m (0.21−0.33 m) respectively in 2050, and will rise by 0.59 m (0.47−0.80 m) and 0.83 m (0.64−1.09 m) respectively in 2100. (4) During 2021−2040, the median value of sea level rise predicted by statistics is close to the predicted value under the low, medium and high scenarios of the numerical model. During 2041−2060, the predicted values of the low, medium and high scenarios of the numerical model are between the middle and high values of the statistical prediction. During 2081−2100, the high value of sea level rise predicted by statistics is close to that predicted by the medium scenario of the numerical model, the absolute deviation is 0.017 m, and the relative deviation is 3.4%. (5) Under the high scenario, the existing once-in-a-century extreme high sea level in 2100 will become less than 10 year return period, in which more than 50% of the stations will become less than 2 year return period, the defense capacity of coastal protection works and other infrastructure will be reduced, and the risk of flood and other disaster events in complex coastal cities will increase.
  • loading
  • [1]
    IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2021: 2391.
    [2]
    Dangendorf S, Hay C, Calafat F M, et al. Persistent acceleration in global sea-level rise since the 1960s[J]. Nature Climate Change, 2019, 9(9): 705−710. doi: 10.1038/s41558-019-0531-8
    [3]
    World Meteorological Organization. State of the global climate 2021[R]. Geneva: World Meteorological Organization, 2022.
    [4]
    IPCC. Sea level change[M]//Stocker T, Qin D, Plattner G, et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2014: 1137−1216.
    [5]
    Oppenheimer M, Glavovic B C, Hinkel J, et al. Sea level rise and implications for low-lying islands, coasts and communities[M]//Pörtner H O, Roberts D C, Masson-Delmotte V, et al. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. Cambridge, UK and New York, NY, USA: Cambridge University Press, 2019: 321−445.
    [6]
    IPCC. Summary for policymakers[M]//Stocker T F, Qin D, Plattner G K, et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2014: 3−29.
    [7]
    Church J A, White N J. Sea-level rise from the late 19th to the early 21st century[J]. Surveys in Geophysics, 2011, 32(4): 585−602. doi: 10.1007/s10712-011-9119-1
    [8]
    IPCC. Summary for policymakers[M]//Pörtner H O, Roberts D C, Masson-Delmotte V, et al. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. Cambridge: Cambridge University Press, 2019.
    [9]
    自然资源部. 2021年中国海平面公报[R]. 北京: 自然资源部, 2022.

    Ministry of Natural Resources. 2021 China sea level bulletin[R]. Beijing: Ministry of Natural Resources, 2022.
    [10]
    Merrifield M A, Thompson P R, Lander M. Multidecadal sea level anomalies and trends in the western tropical Pacific[J]. Geophysical Research Letters, 2012, 39(13): L13602. doi: 10.1029/2012gl052032
    [11]
    Zhang Xuebin, Church J A. Sea level trends, interannual and decadal variability in the Pacific Ocean[J]. Geophysical Research Letters, 2012, 39(21): L21701. doi: 10.1029/2012GL053240
    [12]
    Stammer D, Cazenave A, Ponte R M, et al. Causes for contemporary regional sea level changes[J]. Annual Review of Marine Science, 2013, 5(1): 21−46. doi: 10.1146/annurev-marine-121211-172406
    [13]
    Gregory J M, Andrews T, Ceppi P, et al. How accurately can the climate sensitivity to CO2 be estimated from historical climate change?[J]. Climate Dynamics, 2020, 54(1): 129−157.
    [14]
    Van Breedam J, Goelzer H, Huybrechts P. Semi-equilibrated global sea-level change projections for the next 10 000 years[J]. Earth System Dynamics, 2020, 11(4): 953−976. doi: 10.5194/esd-11-953-2020
    [15]
    IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge, UK and New York, NY, USA: Cambridge University Press, 2022: 3056.
    [16]
    陈长霖. 全球海平面长期趋势变化及气候情景预测研究[D]. 青岛: 中国海洋大学, 2010.

    Chen Changlin. Long term trends in global sea level analyses and predictions[D]. Qingdao: Ocean University of China, 2010.
    [17]
    罗凤云. 21世纪东中国海海平面变化预测研究[D]. 舟山: 浙江海洋大学, 2020.

    Luo Fengyun. Study on sea level changes of the East China Sea for the 21st century[D]. Zhoushan: Zhejiang Ocean University, 2020.
    [18]
    张吉, 左军成, 李娟, 等. RCP4.5情景下预测21世纪南海海平面变化[J]. 海洋学报, 2014, 36(11): 21−29. doi: 10.3969/j.issn.0253-4193.2014.11.003

    Zhang Ji, Zuo Juncheng, Li Juan, et al. Sea level variations in the South China Sea during the 21st Century under RCP4.5[J]. Haiyang Xuebao, 2014, 36(11): 21−29. doi: 10.3969/j.issn.0253-4193.2014.11.003
    [19]
    Huang Chuanjiang, Qiao Fangli. Sea level rise projection in the South China Sea from CMIP5 models[J]. Acta Oceanologica Sinica, 2015, 34(3): 31−41. doi: 10.1007/s13131-015-0631-x
    [20]
    王慧, 刘秋林, 李欢, 等. 海平面变化研究进展[J]. 海洋信息, 2018, 33(3): 19−25, 54.

    Wang Hui, Liu Qiulin, Li Huan, et al. Latest research and progress on sea level change[J]. Marine Information, 2018, 33(3): 19−25, 54.
    [21]
    刘睿, 刘晓东, 刘恒. 基于CMIP5多模式集合预估东海和南海21世纪海平面高度变化[J]. 地球环境学报, 2020, 11(4): 412−428.

    Liu Rui, Liu Xiaodong, Liu Heng. Projection of the 21st century sea level change in East China Sea and South China Sea based on CMIP5 model results[J]. Journal of Earth Environment, 2020, 11(4): 412−428.
    [22]
    王慧, 刘克修, 范文静. 渤海西部海平面资料均一性订正及变化特征[J]. 海洋通报, 2013, 32(3): 256−264.

    Wang Hui, Liu Kexiu, Fan Wenjing. Data uniformity revision and variations of the sea level of the western Bohai Sea[J]. Marine Science Bulletin, 2013, 32(3): 256−264.
    [23]
    WCRP Global Sea Level Budget Group. Global sea-level budget 1993-present[J]. Earth System Science Data, 2018, 10(3): 1551−1590. doi: 10.5194/essd-10-1551-2018
    [24]
    李薇, 张学洪, 金向泽. 海洋环流模式中不同近似假设下的海表高度[J]. 海洋科学进展, 2003, 21(2): 132−141.

    Li Wei, Zhang Xuehong, Jin Xiangze. Sea level height on different approximations assumptions in ocean circulation models[J]. Advances in Marine Science, 2003, 21(2): 132−141.
    [25]
    黄禄丰, 朱再春, 黄萌田, 等. 基于CMIP6模式优化集合平均预估21世纪全球陆地生态系统总初级生产力变化[J]. 气候变化研究进展, 2021, 17(5): 514−524.

    Huang Lufeng, Zhu Zaichun, Huang Mengtian, et al. Projection of gross primary productivity change of global terrestrial ecosystem in the 21st century based on optimal ensemble averaging of CMIP6 models[J]. Climate Change Research, 2021, 17(5): 514−524.
    [26]
    左军成, 陈宗镛, 周天华. 中国沿岸海平面变化的一种本征分析和随机动态联合模型[J]. 海洋学报, 1996, 18(2): 7−14.

    Zuo Juncheng, Chen Zongyong, Zhou Tianhua. A combined model of intrinsic analysis and stochastic dynamics for sea level changes along the coast of China[J]. Haiyang Xuebao, 1996, 18(2): 7−14.
    [27]
    方国洪, 郑文振, 陈宗镛, 等. 潮汐和潮流的分析和预报[M]. 北京: 海洋出版社, 1986.

    Fang Guohong, Zheng Wenzhen, Chen Zongyong, et al. Analysis and Prediction of Tides and Tidal Currents[M]. Beijing: China Ocean Press, 1986.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(5)

    Article views (794) PDF downloads(149) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return