Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 45 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
Guo Hao,Ji Qing,Pang Xiaoping, et al. Comparison and evaluation of seven commonly used Antarctic passive microwave sea ice concentration products[J]. Haiyang Xuebao,2023, 45(6):141–159 doi: 10.12284/hyxb2023083
Citation: Guo Hao,Ji Qing,Pang Xiaoping, et al. Comparison and evaluation of seven commonly used Antarctic passive microwave sea ice concentration products[J]. Haiyang Xuebao,2023, 45(6):141–159 doi: 10.12284/hyxb2023083

Comparison and evaluation of seven commonly used Antarctic passive microwave sea ice concentration products

doi: 10.12284/hyxb2023083
  • Received Date: 2022-09-27
  • Rev Recd Date: 2023-01-13
  • Available Online: 2023-09-05
  • Publish Date: 2023-06-30
  • Focused on the differences and accuracy of passive microwave sea ice concentration products (PM-SIC) released by domestic and foreign institutions, the sea ice concentration retrieved by MODIS and Sentinel-1 is analyzed. The products of University of Bremen (UB-AMSR2/ASI), National Snow and Ice Data Centre (NSIDC-SSMIS/NT, NSIDC-SSMIS/CDR, NSIDC-AMSR2/NT2), European Organization for the Exploitation of Meteorological Satellites (OSI-SAF/BR-BST), National Satellite Ocean Application Service (NSOAS-SMR/NT) and the National Satellite Meteorological Center (NSMC-MWRI/NT2) were conducted. The results show that: (1) The sea ice concentration of NSIDC-SSMIS/NT and NSIDC-SSMIS/CDR has a high consistency (mean deviation of − 0.08%, correlation coefficient of 0.99), and the difference between NSOAS-SMR/NT and NSIDC-AMSR2/NT2 is the largest (mean deviation of −14.41%, correlation coefficient of 0.99); (2) The variation trends of the seven PM-SIC are consistent, and the deviations of NSOAS-SMR/NT and NSMC-MWRI/NT2 show obvious seasonal differences with other PM-SIC; (3) The absolute deviation between NSOAS-SMR/NT, NSMC-MWRI/NT2 and other PM-SIC sectors is large in the Indian Ocean sector, Bellingshausen Sea and Amundsen Sea sector, and the difference is the smallest in the Ross Sea sector. The area with large deviation is mainly distributed in the sea ice margin area and near the land sea, and the difference is small in the high sea ice concentration area; (4) Seven PM-SIC are validated by the MODIS and Sentinel-1 retrieved sea ice concentration, and the consistency between NSMC-MWRI/NT2 and validation data is the highest. sea ice concentration of NSOAS-SMR/NT, UB-AMSR2/ASI and OSI-SAF/BR-BST was low, while the sea ice concentration of NSMC-MWRI/NT2, NSIDC-AMSR2/NT2, NSIDC-SSMIS/CDR and NSIDC-SSMIS/NT is high. The comparison and evaluation of different sea ice intensity products can provide the basis and reference for the development of remote sensing inversion algorithm, the development and application of high-quality sea ice intensity products, and the better monitoring of Antarctic sea ice changes.
  • loading
  • [1]
    Turner J, Bindschadler R A, Convey P, et al. Antarctic Climate Change and the Environment[M]. Cambridge: SCAR, 2009.
    [2]
    Parkinson C L, Cavalieri D J. A 21 year record of Arctic sea-ice extents and their regional, seasonal and monthly variability and trends[J]. Annals of Glaciology, 2002, 34: 441−446. doi: 10.3189/172756402781817725
    [3]
    王今菲, 杨清华, 于乐江, 等. 南极海冰变化及其气候效应研究述评[J]. 海洋学报, 2021, 43(7): 11−22.

    Wang Jinfei, Yang Qinghua, Yu Lejiang, et al. A review on Antarctic sea ice change and its climate effects[J]. Haiyang Xuebao, 2021, 43(7): 11−22.
    [4]
    赵羲, 苏昊月, 石中玉, 等. 南极海冰密集度多源数据的交叉检验[J]. 武汉大学学报·信息科学版, 2015, 40(11): 1460−1466.

    Zhao Xi, Su Haoyue, Shi Zhongyu, et al. Intercomparison of multi-sources sea ice concentration data in Antarctic[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1460−1466.
    [5]
    解思梅, 邹斌, 王毅. 南极海冰的长期变化趋势[J]. 海洋预报, 1996(3): 21−29.

    Xie Simei, Zou Bin, Wang Yi. Long-range variation trend of the Antarctic sea ice[J]. Marine Forecasts, 1996(3): 21−29.
    [6]
    Cavalieri D J, Parkinson C L. Arctic sea ice variability and trends, 1979−2010[J]. The Cryosphere, 2012, 6(4): 881−889. doi: 10.5194/tc-6-881-2012
    [7]
    Cavalieri D J, Gloersen P, Campbell W J. Determination of sea ice parameters with the NIMBUS 7 SMMR[J]. Journal of Geophysical Research: Atmospheres, 1984, 89(D4): 5355−5369. doi: 10.1029/JD089iD04p05355
    [8]
    Comiso J C, Cavalieri D J, Parkinson C L, et al. Passive microwave algorithms for sea ice concentration: a comparison of two techniques[J]. Remote Sensing of Environment, 1997, 60(3): 357−384. doi: 10.1016/S0034-4257(96)00220-9
    [9]
    Markus T, Cavalieri D J. An enhancement of the NASA Team sea ice algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(3): 1387−1398. doi: 10.1109/36.843033
    [10]
    Kern S, Lavergne T, Notz D, et al. Satellite passive microwave sea-ice concentration data set intercomparison: closed ice and ship-based observations[J]. The Cryosphere, 2019, 13(12): 3261−3307. doi: 10.5194/tc-13-3261-2019
    [11]
    Spreen G, Kaleschke L, Heygster G. Sea ice remote sensing using AMSR-E 89-GHz channels[J]. Journal of Geophysical Research: Oceans, 2008, 113(C2): C02S03.
    [12]
    Ivanova N, Johannessen O M, Pedersen L T, et al. Retrieval of Arctic sea ice parameters by satellite passive microwave sensors: a comparison of eleven sea ice concentration algorithms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11): 7233−7246. doi: 10.1109/TGRS.2014.2310136
    [13]
    Andersen S, Tonboe R, Kaleschke L, et al. Intercomparison of passive microwave sea ice concentration retrievals over the high-concentration Arctic sea ice[J]. Journal of Geophysical Research: Oceans, 2007, 112(C8): C08004.
    [14]
    Ivanova N, Pedersen L T, Tonboe R T, et al. Inter-comparison and evaluation of sea ice algorithms: towards further identification of challenges and optimal approach using passive microwave observations[J]. The Cryosphere, 2015, 9(5): 1797−1817. doi: 10.5194/tc-9-1797-2015
    [15]
    苏昊月, 庞小平, 赵羲. 南极海冰边界AMSR-E密集度产品精度检验[J]. 武汉大学学报·信息科学版, 2016, 41(4): 559−564.

    Su Haoyue, Pang Xiaoping, Zhao Xi. Assessment of AMSR-E sea ice concentration products at ice edges in Antarctic[J]. Geomatics and Information Science of Wuhan University, 2016, 41(4): 559−564.
    [16]
    赵杰臣, 周翔, 孙晓宇, 等. 北极遥感海冰密集度数据的比较和评估[J]. 遥感学报, 2017, 21(3): 351−364.

    Zhao Jiechen, Zhou Xiang, Sun Xiaoyu, et al. The inter comparison and assessment of satellite sea-ice concentration datasets from the Arctic[J]. Journal of Remote Sensing, 2017, 21(3): 351−364.
    [17]
    王晓雨, 管磊, 李乐乐. FY-3B/MWRI和Aqua/AMSR-E海冰密集度比较及印证[J]. 遥感学报, 2018, 22(5): 723−736.

    Wang Xiaoyu, Guan Lei, Li Lele. Comparison and validation of sea ice concentration from FY-3B/MWRI and Aqua/AMSR-E observations[J]. Journal of Remote Sensing, 2018, 22(5): 723−736.
    [18]
    Andersen S, Tonboe R, Kern S, et al. Improved retrieval of sea ice total concentration from spaceborne passive microwave observations using numerical weather prediction model fields: an intercomparison of nine algorithms[J]. Remote Sensing of Environment, 2006, 104(4): 374−392. doi: 10.1016/j.rse.2006.05.013
    [19]
    李钊, 严明, 刘凯, 等. 两种准实时遥感海冰密集度产品在中国第五次北极考察期间的适用性评估[J]. 海洋预报, 2018, 35(3): 8−16.

    Li Zhao, Yan Ming, Liu Kai, et al. The assessment of the applicability of AMSR2 and SSMIS near real time satellite sea ice concentration during 5th CHINARE Arctic cruise[J]. Marine Forecasts, 2018, 35(3): 8−16.
    [20]
    刘婷婷, 杨子健, 王泽民, 等. 利用风云3D微波成像仪数据估算北极海冰密集度的精度评价[J]. 武汉大学学报·信息科学版, 2021, 46(12): 1843−1851.

    Liu Tingting, Yang Zijian, Wang Zemin, et al. Evaluation of Arctic sea ice concentration estimated by Fengyun-3D microwave radiation imager[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1843−1851.
    [21]
    郑杨龙, 卢鹏, 李志军, 等. 基于Radarsat-2 SAR图像分类与HY-2微波辐射计反演获取北极海冰密集度的比较研究[J]. 极地研究, 2016, 28(3): 413−423.

    Zheng Yanglong, Lu Peng, Li Zhijun, et al. Comparisons of Arctic sea ice concentrations obtained by classification of radarsat-2 synthetic aperture radar imagery and retrievals from HY-2 scanning microwave radiometer[J]. Chinese Journal of Polar Research, 2016, 28(3): 413−423.
    [22]
    谢涛, 赵立. 海冰密集度卫星遥感反演研究进展[J]. 海洋科学进展, 2022, 40(3): 351−366.

    Xie Tiao, Zhao Li. Advances in sea ice concentration retrieval based on satellite remote sensing[J]. Advances in Marine Science, 2022, 40(3): 351−366.
    [23]
    赵进平, 任敬萍. 从航空数字影像提取北极海冰形态参数的方法研究[J]. 遥感学报, 2000, 21(4): 271−278.

    Zhao Jinping, Ren Jingping. Study on the method to analyze parameters of Arctic sea ice from airborne digital imagery[J]. Journal of Remote Sensing, 2000, 21(4): 271−278.
    [24]
    Partington K, Flynn T, Lamb D, et al. Late twentieth century northern Hemisphere sea-ice record from U. S. National Ice Center ice charts[J]. Journal of Geophysical Research: Oceans, 2003, 108(C11): 3343. doi: 10.1029/2002JC001623
    [25]
    梁爽. 极地海冰密集度和厚度遥感反演方法研究[D]. 北京: 中国科学院大学, 2021.

    Liang Shuang. Research on polar sea ice concentration and thickness retrieval using remote sensing observations[D]. Beijing: University of Chinese Academy of Sciences, 2021.
    [26]
    王剑, 邱玉宝, 熊振华, 等. 北极海冰密集度遥感数据产品对比及航道关键区验证研究[J]. 极地研究, 2020, 32(3): 301−313.

    Wang Jian, Qiu Yubao, Xiong Zhenhua, et al. Comparison and verification of remote sensing sea ice concentration products for Arctic shipping regions[J]. Chinese Journal of Polar Research, 2020, 32(3): 301−313.
    [27]
    苏洁, 郝光华, 叶鑫欣, 等. 极区海冰密集度AMSR-E数据反演算法的试验与验证[J]. 遥感学报, 2013, 17(3): 495−513.

    Su Jie, Hao Guanghua, Ye Xinxin, et al. The experiment and validation of sea ice concentration AMSR-E retrieval algorithm in polar region[J]. Journal of Remote Sensing, 2013, 17(3): 495−513.
    [28]
    Hao Hairui, Su Jie, Shi Qian, et al. Arctic sea ice concentration retrieval using the DT-ASI algorithm based on FY-3B/MWRI data[J]. Acta Oceanologica Sinica, 2021, 40(11): 176−188. doi: 10.1007/s13131-021-1839-6
    [29]
    Hao Guanghua, Su Jie. A study on the dynamic tie points ASI algorithm in the Arctic Ocean[J]. Acta Oceanologica Sinica, 2015, 34(11): 126−135. doi: 10.1007/s13131-015-0659-y
    [30]
    Chen Ying, Zhao Xi, Pang Xiaoping, et al. Daily sea ice concentration product based on brightness temperature data of FY-3D MWRI in the Arctic[J]. Big Earth Data, 2022, 6(2): 164−178. doi: 10.1080/20964471.2020.1865623
    [31]
    Cavalieri D J, Markus T, Hall D K, et al. Assessment of AMSR-E Antarctic winter sea-ice concentrations using Aqua MODIS[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(9): 3331−3339. doi: 10.1109/TGRS.2010.2046495
    [32]
    Liang Shunlin, Strahler A H, Walthall C. Retrieval of land surface albedo from satellite observations: a simulation study[J]. Journal of Applied Meteorology, 1999, 38(6): 712−725. doi: 10.1175/1520-0450(1999)038<0712:ROLSAF>2.0.CO;2
    [33]
    Shi Qian, Su Jie, Heygster G, et al. Step-by-step validation of Antarctic ASI AMSR-E Sea-Ice concentrations by MODIS and an Aerial Image[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(1): 392−403.
    [34]
    杨魁, 杨建兵, 江冰茹. Sentinel-1 卫星综述[J]. 城市勘测, 2015(2): 24−27.

    Yang Kui, Yang Jianbing, Jiang Bingru. Sentinel-1 satellite overview[J]. Urban Geotechnical Investigation & Surveying, 2015(2): 24−27.
    [35]
    朱婷婷. 南北极典型场景SAR海冰解译研究[D]. 武汉: 武汉大学, 2017.

    Zhu Tingting. Interpretation of sea ice geophysical parameters from SAR in selected regions of the Antarctic and the Arctic[D]. Wuhan: Wuhan University, 2017.
    [36]
    刘境舟, 赵亮, 王圣, 等. 威德尔海海冰年际变化特征[J]. 极地研究, 2021, 33(4): 518−528.

    Liu Jingzhou, Zhao Liang, Wang Sheng, et al. Interannual variation characteristics of sea ice in the Weddell Sea[J]. Chinese Journal of Polar Research, 2021, 33(4): 518−528.
    [37]
    刘森, 邹斌, 石立坚, 等. 基于FY-3C微波辐射计数据的极区海冰密集度反演方法研究[J]. 海洋学报, 2020, 42(1): 113−122.

    Liu Sen, Zou Bin, Shi Lijian, et al. Polar sea ice concentration retrieval based on FY-3C microwave radiation imager data[J]. Haiyang Xuebao, 2020, 42(1): 113−122.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(8)

    Article views (304) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return