Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 45 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
Zhang Hui,Liu Jihua,Gao Jingjing, et al. Geochemical characteristics and resource potentiality evaluation of tellurium in Co-rich crusts from the Mid-West Pacific Ocean[J]. Haiyang Xuebao,2023, 45(6):109–121 doi: 10.12284/hyxb2023079
Citation: Zhang Hui,Liu Jihua,Gao Jingjing, et al. Geochemical characteristics and resource potentiality evaluation of tellurium in Co-rich crusts from the Mid-West Pacific Ocean[J]. Haiyang Xuebao,2023, 45(6):109–121 doi: 10.12284/hyxb2023079

Geochemical characteristics and resource potentiality evaluation of tellurium in Co-rich crusts from the Mid-West Pacific Ocean

doi: 10.12284/hyxb2023079
  • Received Date: 2022-03-28
  • Rev Recd Date: 2022-10-04
  • Available Online: 2023-06-27
  • Publish Date: 2023-06-30
  • In this paper, 185 iron manganeses crustal samples of 14 seamounts in 5 seamount groups of the Pacific seamount group (Central Pacific seamounts, Line seamount Chain) and the Western Pacific seamount group (Magellanic seamounts, Markus−Wake seamounts, marshall seamounts) have been analyzed for tellurium, and their spatial distribution, geochemical characteristics, chemical form and resource potential have been studied. The results show that the variation range of tellurium in cobalt-rich crusts is from 17.8 μg/g to 145.2 μg/g, and the average value is 47.4 μg/g. The content range and regional enrichment degree of tellurium in each seamount are quite different. The enrichment degree in descending order is the Magellanic seamounts, Marshall seamounts, Marcus−Wake seamounts , Central Pacific seamounts and Line seamount Chain, showing a trend of gradually decreasing from west to east, and different seamount groups also show obvious regional distribution characteristics. Tellurium content and water depth profile show the same radial and opposite latitudinal trends, indicating that the enrichment of Te is not only related to the depth of crust in seawater, but also related to the longitude and latitude, seamount topography, and regional metallogenic environment. The leaching results show that tellurium is mainly enriched in iron oxides and residues, and the oxygen-rich environment and biological action of phosphorylation play a decisive role in the enrichment of tellurium. Concerning the minimum industrial grade requirements for terrestrial associated useful elements, the tellurium content in cobalt-rich crusts of seamount samples in the Mid-West Pacific Ocean study areas meets the industrial grade requirements, which has potential development value. According to the estimation of cobalt-rich crust reserves, the tellurium reserves in cobalt-rich crusts in the Mid-West Pacific Ocean are more than 76300 tons, which is an important reserve base for seafloor tellurium resources.ic
  • loading
  • [1]
    黎彤. 化学元素的地球丰度[J]. 地球化学, 1976, 5(3): 167−174.

    Li Tong. Chemical element abundances in the earth and it’s major shells[J]. Geochimica, 1976, 5(3): 167−174.
    [2]
    Bureau of Mines United States Department of the Interior. Mineral commodity summaries[R]. Washington: 1990.
    [3]
    中国地质矿产信息研究院. 中国矿产[M]. 北京: 中国建材工业出版社, 1993.

    China Academy of Geology and Mineral Information. Mineral Resources of China[M]. Beijing: China Building Materials Industry Press, 1993.
    [4]
    National Minerals Information Center. Mineral Commodity Summaries 2018[M]. Reston, Virginia: National Minerals Information Center, 2018: 1−200.
    [5]
    Naumov A V. Selenium and tellurium: state of the markets, the crisis, and its consequences[J]. Metallurgist, 2010, 54(3/4): 197−200.
    [6]
    Hein J R, Koschinsky A, Halliday A N. Global occurrence of tellurium-rich ferromanganese crusts and a model for the enrichment of tellurium[J]. Geochimica et Cosmochimica Acta, 2003, 67(6): 1117−1127. doi: 10.1016/S0016-7037(02)01279-6
    [7]
    Baturin G N. Tellurium and thallium in ferromanganese crusts and phosphates on oceanic seamounts[J]. Doklady Earth Sciences, 2007, 413(2): 331−335. doi: 10.1134/S1028334X07030014
    [8]
    张富元, 章伟艳, 朱克超, 等. 太平洋海山钴结壳资源量估算[J]. 地球科学−中国地质大学学报, 2011, 36(1): 1−11.

    Zhang Fuyuan, Zhang Weiyan, Zhu Kechao, et al. Resource estimation of Co-rich crusts of seamounts in the Pacific[J]. Earth Science−Journal of China University of Geosciences, 2011, 36(1): 1−11.
    [9]
    Bogdanova O Y, Gorshkov A I, Novikov G V, et al. Mineralogy of morphogenetic types of ferromanganese deposits in the world ocean[J]. Geology of Ore Deposits, 2008, 50(6): 462−469. doi: 10.1134/S1075701508060044
    [10]
    赵广涛, 何雨旸, 陈淳, 等. 太平洋铁锰结核与富Co结壳的矿物地球化学比较研究[J]. 中国海洋大学学报, 2011, 41(5): 85−93.

    Zhao Guangtao, He Yuyang, Chen Chun, et al. Comparison of the mineral and geochemistry characteristics between Co-rich crusts and ferromanganese nodules from the Pacific Ocean[J]. Periodical of Ocean University of China, 2011, 41(5): 85−93.
    [11]
    赵建如, 初凤友, 杨克红, 等. 中太平洋C海山富钴结壳铁锰矿物的组成、成分特征及其成因意义[J]. 海洋学研究, 2009, 27(1): 15−21.

    Zhao Jianru, Chu Fengyou, Yang Kehong, et al. Manganese mineral components, compositional characteristics and their implication for genesis of cobalt-rich crust from C seamount in Central Pacific[J]. Journal of Marine Sciences, 2009, 27(1): 15−21.
    [12]
    《矿产资源工业要求参考手册》编委会. 矿产资源工业要求参考手册[M]. 北京: 地质出版社, 2022: 60.

    Editorial Board of the Reference Manual for Industrial Requirements for Mineral Resources. Reference Manual for Industrial Requirements of Mineral Resources[M]. Beijing: Geology Press, 2022: 60.
    [13]
    Koschinsky A, Hein J R. Uptake of elements from seawater by ferromanganese crusts: solid-phase associations and seawater speciation[J]. Marine Geology, 2003, 198(3/4): 331−351.
    [14]
    崔迎春, 石学法, 刘季花, 等. 大洋铁锰结壳中分散元素初步研究[J]. 矿物学报, 2011, 31(S1): 689.

    Cui Yingchun, Shi Xuefa, Liu Jihua, et al. Preliminary study on dispersed elements in oceanic ferromanganese crusts[J]. Acta Mineralogica Sinica, 2011, 31(S1): 689.
    [15]
    Baturin G N, Dubinchuk V T, Azarnova L A, et al. Species of molybdenum, thallium, and tellurium in ferromanganese crusts of oceanic seamounts[J]. Oceanology, 2007, 47(3): 415−422. doi: 10.1134/S0001437007030149
    [16]
    Hein J R , Bargar J , Koschinsky A , et al. Sequestration of tellurium from seawater by ferromanganese crusts: A XANES/EXAFS perspective[R]. AGU Fall Meeting Abstracts, 2007.
    [17]
    武光海, 刘捷红. 海山当地物源和南极底层水对富钴结壳成矿作用的影响——来自海山周围水柱化学分析的证据[J]. 海洋学报, 2012, 34(3): 92−98.

    Wu Guanghai, Liu Jiehong. A local metal sources and the influence of the Antarctic Bottom Water on the cobalt-rich crust formatim—New evidence from the data of seawater column chemistry around a seamount[J]. Haiyang Xuebao, 2012, 34(3): 92−98.
    [18]
    高晶晶, 刘季花, 张辉, 等. 太平洋徐福海山富钴结壳稀土元素和铂族元素赋存状态研究[J]. 海洋学报, 2021, 43(11): 77−87.

    Gao Jingjing, Liu Jihua, Zhang Hui, et al. Occurrence phases of rare earth elements and platinum group elements in cobalt-rich crusts from the Seamount Xufu in the Pacific[J]. Haiyang Xuebao, 2021, 43(11): 77−87.
    [19]
    游国庆, 刘淑琴, 潘家华. 太平洋富钴结壳中碲元素的地球化学特征及其富集机制探讨[J]. 矿床地质, 2014, 33(1): 223−232.

    You Guoqing, Liu Shuqin, Pan Jiahua. Geochemical characteristics and enrichment mechanism of tellurium in Co-rich crusts from Pacific Ocean[J]. Mineral Deposits, 2014, 33(1): 223−232.
    [20]
    Butler I B, Nesbitt R W. Trace element distributions in the chalcopyrite wall of a black smoker chimney: insights from laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)[J]. Earth and Planetary Science Letters, 1999, 167(3/4): 335−345.
    [21]
    Anders E, Grevesse N. Abundances of the elements: meteoritic and solar[J]. Geochimica et Cosmochimica Acta, 1989, 53(1): 197−214. doi: 10.1016/0016-7037(89)90286-X
    [22]
    Baturin G N . The Geochemistry of Manganese and Manganese Nodules in the Ocean [M]. Dordrecht: Springer, 1988.
    [23]
    McDonough W F, Sun Shensu. The composition of the Earth[J]. Chemical Geology, 1995, 120(3/4): 223−253.
    [24]
    Yi Wen, Halliday A N, Alt J C, et al. Cadmium, indium, tin, tellurium, and sulfur in oceanic basalts: implications for chalcophile element fractionation in the Earth[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B8): 18927−18948. doi: 10.1029/2000JB900152
    [25]
    Govett G J S. Rock geochemistry in mineral exploration[J]. Earth Science Reviews, 1983, 17(3): 298−299.
    [26]
    全国矿产储量委员会办公室. 矿产工业要求参考手册[M]. 2版. 北京: 地质出版社, 1987: 208−209, 646.

    National Commission of Mineral Reserves. Mineral Industry Requirements Reference Manual[M]. 2nd ed. Beijing: Geology Press, 1987: 208−209, 646.
    [27]
    中国大洋矿产资源研究开发协会. DY105-11航次现场报告[R]. 2003.

    China Ocean Mineral Resources Research and Development Association. DY105-11 Voyage site report[R]. 2003.
    [28]
    中国大洋矿产资源研究开发协会. DY105-13航次现场报告[R]. 2004.

    China Ocean Mineral Resources Research and Development Association. DY105-13 Voyage site report[R]. 2004.
    [29]
    中国大洋矿产资源研究开发协会. DY105-15航次现场报告[R]. 2003.

    China Ocean Mineral Resources Research and Development Association. DY105-15 Voyage site report[R]. 2003.
    [30]
    中国大洋矿产资源研究开发协会. DY105-17B航次现场报告[R]. 2005.

    China Ocean Mineral Resources Research and Development Association. DY105-17B Voyage site report[R]. 2005.
    [31]
    中国大洋矿产资源研究开发协会. DY105-19航次现场报告[R]. 2007.

    China Ocean Mineral Resources Research and Development Association. DY105-19 Voyage site report[R]. 2007.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(5)

    Article views (202) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return