Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 45 Issue 5
May  2023
Turn off MathJax
Article Contents
Zhang Yongcong,Hu Liangming,Sun Xi, et al. Rare earth element and Sr-Nd isotopic characteristics of the sediments in Antarctic Cosmonaut Sea and their provenance significances since the late Middle-Holocene[J]. Haiyang Xuebao,2023, 45(5):14–26 doi: 10.12284/hyxb2023076
Citation: Zhang Yongcong,Hu Liangming,Sun Xi, et al. Rare earth element and Sr-Nd isotopic characteristics of the sediments in Antarctic Cosmonaut Sea and their provenance significances since the late Middle-Holocene[J]. Haiyang Xuebao,2023, 45(5):14–26 doi: 10.12284/hyxb2023076

Rare earth element and Sr-Nd isotopic characteristics of the sediments in Antarctic Cosmonaut Sea and their provenance significances since the late Middle-Holocene

doi: 10.12284/hyxb2023076
  • Received Date: 2022-09-22
  • Rev Recd Date: 2022-10-17
  • Available Online: 2023-06-13
  • Publish Date: 2023-05-01
  • Carrying out researches on marine sediments’ source can help to better understand the mechanism of material transport and the process of regional and global material circulation. A sediment provenance study has been conducted by analyzing the rare earth element and Sr-Nd isotopes of the ANT36-C4-05 core sediment in the Cosmonaut Sea, Antarctic. The results show that the average content of rare earth element (REE) in the sediment is relatively high, with an obvious fractionation between light REE (LREE) and heavy REE (HREE); and the average 87Sr/86Sr value of the sediment is relatively high, while the average εNd(0) value is significantly negative. The REE and Sr-Nd isotopic characteristics indicate that since the late Middle-Holocene, the sediment is mainly originated from high-grade metamorphic rocks in the vicinity of the Prydz Bay and Enderby Land, East Antarctic. These detrital materials are partly introduced into the Cosmonaut Sea under the ice-sea interaction, with the Antarctic Coastal Current and Antarctic Slope Current playing important roles in the transportation; simultaneously, it may also rely on katabatic winds originating from the Antarctic interior plateau to complete the transport process from source areas to the study area. The results of the provenance end member mixing model show that the sediment is mainly originated from metamorphic rocks in the Prydz Bay area (>70%), while the contribution from Enderby Land is relatively small. The significant difference in the contribution of two source areas is related to the differences in glaciers, ocean currents, and wind forces between two areas: compared to Enderby Land, the glacier in the Prydz Bay area is larger in scale and moves at a faster speed, with a stronger erosive and transport capacity for the bedrock; in the meanwhile, the Antarctic Bottom Water originating from the bottom of the Prydz Bay area may play an important role during the westward transportation; and the Prydz Bay area is one of the stronger wind force regions of katabatic winds, which can contribute more bedrock debris to downwind areas, for example the Cosmonaut Sea. These factors result in the characteristic of the ANT36-C4-05 core sediment in the Cosmonaut Sea which is mainly from the Prydz Bay area.
  • loading
  • [1]
    Vermeesch P, Resentini A, Garzanti E. An R package for statistical provenance analysis[J]. Sedimentary Geology, 2016, 336: 14−25. doi: 10.1016/j.sedgeo.2016.01.009
    [2]
    Weltje G J, Von Eynatten H. Quantitative provenance analysis of sediments: review and outlook[J]. Sedimentary Geology, 2004, 171(1/4): 1−11.
    [3]
    Goldstein S L, Hemming S R. Long-lived isotopic tracers in oceanography, paleoceanography, and ice-sheet dynamics[M]//Holland H D, Turekian K K, Elderfield H. Treatise on Geochemistry. Oxford: Elsevier-Pergamon, 2003: 453–489.
    [4]
    Diekmann B. Sedimentary patterns in the late Quaternary Southern Ocean[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2007, 54(21/22): 2350−2366.
    [5]
    Sudarchikova N, Mikolajewicz U, Timmreck C, et al. Modelling of mineral dust for interglacial and glacial climate conditions with a focus on Antarctica[J]. Climate of the Past, 2015, 11(5): 765−779. doi: 10.5194/cp-11-765-2015
    [6]
    Roy M, Van De Flierdt T, Hemming S R, et al. 40Ar/39Ar ages of hornblende grains and bulk Sm/Nd isotopes of circum-Antarctic glacio-marine sediments: implications for sediment provenance in the Southern Ocean[J]. Chemical Geology, 2007, 244(3/4): 507−519.
    [7]
    Pereira P S, Van De Flierdt T, Hemming S R, et al. Geochemical fingerprints of glacially eroded bedrock from West Antarctica: detrital thermochronology, radiogenic isotope systematics and trace element geochemistry in Late Holocene glacial-marine sediments[J]. Earth-Science Reviews, 2018, 182: 204−232. doi: 10.1016/j.earscirev.2018.04.011
    [8]
    Sheraton J W, Black L P, McCulloch M T. Regional geochemical and isotopic characteristics of high-grade metamorphics of the Prydz Bay area: the extent of Proterozoic reworking of Qrchaean continental crust in East Antarctica[J]. Precambrian Research, 1984, 26(2): 169−198. doi: 10.1016/0301-9268(84)90043-3
    [9]
    Anand S S, Rahaman W, Lathika N, et al. Trace elements and Sr, Nd isotope compositions of surface sediments in the Indian Ocean: an evaluation of sources and processes for sediment transport and dispersal[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(6): 3090−3112. doi: 10.1029/2019GC008332
    [10]
    Pierce E L, Williams T, Van De Flierdt T, et al. Characterizing the sediment provenance of East Antarctica’s weak underbelly: the Aurora and Wilkes sub-glacial basins[J]. Paleoceanography, 2011, 26(4): PA4217.
    [11]
    Kuvaas B, Kristoffersen Y, Guseva J, et al. Input of glaciomarine sediments along the East Antarctic continental margin; depositional processes on the Cosmonaut Sea continental slope and rise and a regional acoustic stratigraphic correlation from 40°W to 80°E[J]. Marine Geophysical Researches, 2004, 25(3/4): 247−263.
    [12]
    Solli K, Kuvaas B, Kristoffersen Y, et al. The Cosmonaut Sea Wedge[J]. Marine Geophysical Researches, 2008, 29(1): 51−69. doi: 10.1007/s11001-008-9045-x
    [13]
    胡栟铫, 龙飞江, 韩喜彬, 等. 中全新世以来南极宇航员海的古生产力演变[J]. 地学前缘, 2022, 29(4): 113−122.

    Hu Bingyao, Long Feijiang, Han Xibin, et al. The evolution of paleoproductivity since the Middle Holocene in the Cosmonaut Sea, Antarctic[J]. Earth Science Frontiers, 2022, 29(4): 113−122.
    [14]
    毛光周, 刘池洋. 地球化学在物源及沉积背景分析中的应用[J]. 地球科学与环境学报, 2011, 33(4): 337−348. doi: 10.3969/j.issn.1672-6561.2011.04.002

    Mao Guangzhou, Liu Chiyang. Application of geochemistry in provenance and depositional setting analysis[J]. Journal of Earth Sciences and Environment, 2011, 33(4): 337−348. doi: 10.3969/j.issn.1672-6561.2011.04.002
    [15]
    王轲, 翟世奎. 沉积物源判别的地球化学方法[J]. 海洋科学, 2020, 44(12): 132−143.

    Wang Ke, Zhai Shikui. Geochemical methods for identification of sedimentary provenance[J]. Marine Sciences, 2020, 44(12): 132−143.
    [16]
    Mills R A, Teagle D A H, Tivey M K. Fluid mixing and anhydrite precipitation within The TAG Mound[J]. Proceedings of the Ocean Drilling Program, Scientific Results, 1998, 158: 119−127.
    [17]
    Stagg H M J, Colwel J B, Direen N G, et al. Geology of the continental margin of Enderby and Mac. Robertson Lands, East Antarctica: insights from a regional data set[J]. Marine Geophysical Researches, 2004, 25(3/4): 183−219.
    [18]
    Meijers A J S, Klocker A, Bindoff N L, et al. The circulation and water masses of the Antarctic shelf and continental slope between 30 and 80°E[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2010, 57(9/10): 723−737.
    [19]
    Hunt B P V, Pakhomov E A, Trotsenko B G. The macrozooplankton of the Cosmonaut Sea, east Antarctica (30°E−60°E), 1987−1990[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2007, 54(7): 1042−1069. doi: 10.1016/j.dsr.2007.04.002
    [20]
    Williams G D, Nicol S, Aoki S, et al. Surface oceanography of BROKE-West, along the Antarctic margin of the south-west Indian Ocean (30−80°E)[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2010, 57(9/10): 738−757.
    [21]
    Thompson A F, Stewart A L, Spence P, et al. The Antarctic Slope Current in a changing climate[J]. Reviews of Geophysics, 2018, 56(4): 741−770. doi: 10.1029/2018RG000624
    [22]
    White D A, Fink D. Late Quaternary glacial history constrains glacio-isostatic rebound in Enderby Land, East Antarctica[J]. Journal of Geophysical Research: Earth Surface, 2014, 119(3): 401−413. doi: 10.1002/2013JF002870
    [23]
    Comiso J C, Gordon A L. Recurring polynyas over the Cosmonaut Sea and the Maud Rise[J]. Journal of Geophysical Research: Oceans, 1987, 92(C3): 2819−2833. doi: 10.1029/JC092iC03p02819
    [24]
    Comiso J C. Large-scale characteristics and variability of the global sea ice cover[M]//Thomas D N, Diekmann G S. Sea Ice: an Introduction to its Physics, Chemistry, Biology and Geology. Oxford: Blackwell, 2003: 112–142.
    [25]
    Vihma T, Tuovinen E, Savijärvi H. Interaction of katabatic winds and near-surface temperatures in the Antarctic[J]. Journal of Geophysical Research: Atmospheres, 2011, 116: D21119.
    [26]
    孙启振, 张占海, 付敏, 等. 南极Dome A至普里兹湾沿岸下降风特征[J]. 海洋学报, 2021, 43(7): 125−137.

    Sun Qizhen, Zhang Zhanhai, Fu Min, et al. Characteristics of katabatic winds from Dome A to the coast of Prydz Bay, Antarctica[J]. Haiyang Xuebao, 2021, 43(7): 125−137.
    [27]
    Suzuki S, Hokada T, Ishikawa M, et al. Geochemical study of granulites from Mt. Riiser-Larsen, Enderby Land, East Antarctica: implication for protoliths of the Archaean Napier Complex[J]. Polar Geoscience, 1999, 12: 101−125.
    [28]
    DePaolo D J, Manton W I, Grew E S, et al. Sm-Nd, Rb-Sr and U-Th-Pb systematics of granulite facies rocks from Fyfe Hills, Enderby Land, Antarctica[J]. Nature, 1982, 198(5875): 614−618.
    [29]
    McCulloch M T, Black L P. Sm-Nd isotopic systematics of Enderby Land granulites and evidence for the redistribution of Sm and Nd during metamorphism[J]. Earth and Planetary Science Letters, 1984, 71(1): 46−58. doi: 10.1016/0012-821X(84)90051-7
    [30]
    Black L P, McCulloch M T. Evidence for isotopic equilibration of Sm-Nd whole-rock systems in early Archaean crust of Enderby Land, Antarctica[J]. Earth and Planetary Science Letters, 1987, 82(1/2): 15−24.
    [31]
    Miyamoto T, Yoshimura Y, Sato K, et al. Occurrences of metamorphosed ultramafic rock and associating rocks in Howard Hills, Enderby Land, East Antarctica: evidence of partial melting from geochemical and isotopic characteristics[J]. Polar Geoscience, 2004, 17: 88−111.
    [32]
    李国刚, 季有俊, 李云海, 等. 南极普里兹湾沉积物稀土元素地球化学特征[J]. 极地研究, 2017, 29(1): 23−32. doi: 10.13679/j.jdyj.2017.1.023

    Li Guogang, Ji Youjun, Li Yunhai, et al. Geochemical characteristics of rare earth elements in the sediments of Prydz Bay, Antarctica[J]. Chinese Journal of Polar Research, 2017, 29(1): 23−32. doi: 10.13679/j.jdyj.2017.1.023
    [33]
    Shao Hebin, He Jianfeng, Wu Li, et al. Elemental and Sr-Nd isotopic compositions of surface clay-size sediments in the front end of major ice shelves around Antarctica and indications for provenance[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2022, 195: 105011. doi: 10.1016/j.dsr2.2021.105011
    [34]
    修淳, 陈新玺, 周勐佳, 等. 南极罗斯海R11柱样晚更新世晚期以来稀土元素地球化学特征[J]. 海洋地质前沿, 2017, 33(5): 1−8. doi: 10.16028/j.1009-2722.2017.05001

    Xiu Chun, Chen Xinxi, Zhou Mengjia, et al. REE geochemical characteristics of Core R11 in the Ross Sea, Antarctic[J]. Marine Geology Frontiers, 2017, 33(5): 1−8. doi: 10.16028/j.1009-2722.2017.05001
    [35]
    石林, 解广轰, 李华梅. 南极泰勒谷及罗斯岛地区火山岩微量元素地球化学[J]. 地球化学, 1998, 27(3): 294−303. doi: 10.3321/j.issn:0379-1726.1998.03.011

    Shi Lin, Xie Guanghong, Li Huamei. Trace element geochemistry of the volcanic rocks from the Taylor Valley and Ross Islands, Antarctica[J]. Geochimica, 1998, 27(3): 294−303. doi: 10.3321/j.issn:0379-1726.1998.03.011
    [36]
    陈志华, 黄元辉, 唐正, 等. 南极半岛东北部海域表层沉积物稀土元素特征及物源指示意义[J]. 海洋地质与第四纪地质, 2015, 35(3): 145−155.

    Chen Zhihua, Huang Yuanhui, Tang Zheng, et al. Rare earth elements in the offshore surface sediments of the northeastern Antarctic Peninsula and their implications for provenance[J]. Marine Geology & Quaternary Geology, 2015, 35(3): 145−155.
    [37]
    Basile I, Grousset F E, Revel M, et al. Patagonian origin of glacial dust deposited in East Antarctica (Vostok and Dome C) during glacial stages 2, 4 and 6[J]. Earth and Planetary Science Letters, 1997, 146(3/4): 573−589.
    [38]
    Delmonte B, Baroni C, Andersson P S, et al. Modern and Holocene aeolian dust variability from Talos Dome (northern Victoria Land) to the interior of the Antarctic ice sheet[J]. Quaternary Science Reviews, 2013, 64: 76−89. doi: 10.1016/j.quascirev.2012.11.033
    [39]
    Grousset F E, Biscaye P E, Revel M, et al. Antarctic (Dome C) ice-core dust at 18 k. y. B. P. : isotopic constraints on origins[J]. Earth and Planetary Science Letters, 1992, 111(1): 175−182. doi: 10.1016/0012-821X(92)90177-W
    [40]
    Aarons S M, Aciego S M, Arendt C A, et al. Dust composition changes from Taylor Glacier (East Antarctica) during the last glacial-interglacial transition: a multi-proxy approach[J]. Quaternary Science Reviews, 2017, 162: 60−71. doi: 10.1016/j.quascirev.2017.03.011
    [41]
    Panter K S, Kyle P R, Smellie J L. Petrogenesis of a phonolite-trachyte succession at Mount Sidley, Marie Byrd Land, Antarctica[J]. Journal of Petrology, 1997, 38(9): 1225−1253. doi: 10.1093/petroj/38.9.1225
    [42]
    Panter K S, Hart S R, Kyle P, et al. Geochemistry of Late Cenozoic basalts from the Crary Mountains: characterization of mantle sources in Marie Byrd Land, Antarctica[J]. Chemical Geology, 2000, 165(3/4): 215−241.
    [43]
    Farmer G L, Licht K J. Generation and fate of glacial sediments in the central Transantarctic Mountains based on radiogenic isotopes and implications for reconstructing past ice dynamics[J]. Quaternary Science Reviews, 2016, 150: 98−109. doi: 10.1016/j.quascirev.2016.08.002
    [44]
    Sutherland R A. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii[J]. Environmental Geology, 2000, 39(6): 611−627. doi: 10.1007/s002540050473
    [45]
    Taylor S R. Abundance of chemical elements in the continental crust: a new table[J]. Geochimica et Cosmochimica Acta, 1964, 28(8): 1273−1285. doi: 10.1016/0016-7037(64)90129-2
    [46]
    Steiger R H, Jäger E. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology[J]. Earth and Planetary Science Letters, 1977, 36(3): 359−362. doi: 10.1016/0012-821X(77)90060-7
    [47]
    Tanaka T, Togashi S, Kamioka H, et al. JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium[J]. Chemical Geology, 2000, 168(3/4): 279−281.
    [48]
    Jacobsen S B, Wasserburg G J. Sm-Nd isotopic evolution of chondrites[J]. Earth and Planetary Science Letters, 1980, 50(1): 139−155. doi: 10.1016/0012-821X(80)90125-9
    [49]
    Boynton W V. Cosmochemistry of the rare earth elements: meteorite studies[M]//Henderson P. Rare Earth Element Geochemistry: Development in Geochemistry. Amsterdam: Elsevier, 1984: 63–114.
    [50]
    蓝先洪, 申顺喜. 南黄海中部沉积岩心的稀土元素地球化学特征[J]. 海洋通报, 2002, 21(5): 46−53. doi: 10.3969/j.issn.1001-6392.2002.05.007

    Lan Xianhong, Shen Shunxi. Geochemical characteristics of rare earth elements of sediment cores from the Central South Yellow Sea[J]. Marine Science Bulletin, 2002, 21(5): 46−53. doi: 10.3969/j.issn.1001-6392.2002.05.007
    [51]
    Holser W T. Evaluation of the application of rare-earth elements to paleoceanography[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 132(1/4): 309−323.
    [52]
    窦衍光, 李军, 李炎. 北部湾东部海域表层沉积物稀土元素组成及物源指示意义[J]. 地球化学, 2012, 41(2): 147−157. doi: 10.3969/j.issn.0379-1726.2012.02.006

    Dou Yanguang, Li Jun, Li Yan. Rare earth element compositions and provenance implication of surface sediments in the eastern Beibu Gulf[J]. Geochimica, 2012, 41(2): 147−157. doi: 10.3969/j.issn.0379-1726.2012.02.006
    [53]
    张宏飞, 高山. 地球化学[M]. 北京: 地质出版社, 2012: 134–135.

    Zhang Hongfei, Gao Shan. Geochemistry[M]. Beijing: Geology Press, 2012: 134–135.
    [54]
    Taylor S R, McLennan S M. The continental crust: its composition and evolution[J]. The Journal of Geology, 1985, 94(4): 57−72.
    [55]
    Shapiro N M, Ritzwoller M H. Inferring surface heat flux distributions guided by a global seismic model: particular application to Antarctica[J]. Earth and Planetary Science Letters, 2004, 223(1/2): 213−224.
    [56]
    Antoniades D, Giralt S, Geyer A, et al. The timing and widespread effects of the largest Holocene volcanic eruption in Antarctica[J]. Scientific Reports, 2018, 8(1): 17279. doi: 10.1038/s41598-018-35460-x
    [57]
    Tingey R J. The regional geology of Archaean and Proterozoic rocks in Antarctica[M]//Tingey R J. The Geology of Antarctica. Oxford: Clarendon Press, 1991: 1–73.
    [58]
    Mikhalsky E V, Sheraton J W, Laiba A A, et al. Geology of the Prince Charles Mountains[M]. Canberra: AGSO Geoscience Australia Bulletin, 2001.
    [59]
    Sandiford M, Wilson C J L. The origin of Archaean Gneisses in the Fyfe Hills region, Enderby Land; field occurrence, petrography and geochemistry[J]. Precambrian Research, 1986, 31(1): 37−68. doi: 10.1016/0301-9268(86)90064-1
    [60]
    Hambrey M J, Mckelvey B. Neogene fjordal sedimentation on the western margin of the Lambert Graben, East Antarctica[J]. Sedimentology, 2000, 47(3): 577−607. doi: 10.1046/j.1365-3091.2000.00308.x
    [61]
    Shipboard Scientific Party. Leg 188 summary: Prydz Bay—Cooperation Sea, Antarctica[R]//O'Brien P E, Cooper A K, Richter C, et al. Proceedings of the Ocean Drilling Program, Initial Reports. Texas: College Station TX (Ocean Drilling Program), 2001, 188: 1−65.
    [62]
    Masson V, Vimeux F, Jouzel J, et al. Holocene climate variability in Antarctica based on 11 ice-core isotopic records[J]. Quaternary Research, 2000, 54(3): 348−358. doi: 10.1006/qres.2000.2172
    [63]
    Ingólfsson Ó. Quaternary glacial and climate history of Antarctica[J]. Developments in Quaternary Sciences, 2004, 2: 3−43.
    [64]
    Wu Li, Wilson D J, Wang Rujian, et al. Late Quaternary dynamics of the Lambert Glacier-Amery Ice Shelf system, East Antarctica[J]. Quaternary Science Reviews, 2021, 252: 106738. doi: 10.1016/j.quascirev.2020.106738
    [65]
    Neelov I A, Danilov A I, Klepikov A V, et al. New diagnostic calculations of the Southern Ocean[J]. Antarctica, 1998, 34: 45−51.
    [66]
    Stewart A L, Klocker A, Menemenlis D. Acceleration and overturning of the Antarctic Slope Current by winds, eddies, and tides[J]. Journal of Physical Oceanography, 2019, 49(8): 2043−2074. doi: 10.1175/JPO-D-18-0221.1
    [67]
    Koffman B G, Goldstein S L, Winckler G, et al. Late Holocene dust provenance at Siple Dome, Antarctica[J]. Quaternary Science Reviews, 2021, 274: 107271. doi: 10.1016/j.quascirev.2021.107271
    [68]
    Lamy F, Gersonde R, Winckler G, et al. Increased dust deposition in the Pacific Southern Ocean during glacial periods[J]. Science, 2014, 343(6169): 403−407. doi: 10.1126/science.1245424
    [69]
    Grew E S. Osumilite in the sapphirine-quartz terrane of Enderby Land, Antarctica: implications for osumilite petrogenesis in the granulite facies[J]. American Mineralogist, 1982, 67(7/8): 762−787.
    [70]
    Jamieson S S R, Sugden D E, Hulton N R J. The evolution of the subglacial landscape of Antarctica[J]. Earth and Planetary Science Letters, 2010, 293(1/2): 1−27.
    [71]
    Golledge N R, Levy R H, McKay R M, et al. Glaciology and geological signature of the Last Glacial Maximum Antarctic ice sheet[J]. Quaternary Science Reviews, 2013, 78: 225−247. doi: 10.1016/j.quascirev.2013.08.011
    [72]
    Van den Broeke M R, Van Lipzig N P M. Factors controlling the near-surface wind field in Antarctica[J]. Monthly Weather Review, 2003, 131(4): 733−743. doi: 10.1175/1520-0493(2003)131<0733:FCTNSW>2.0.CO;2
    [73]
    Sanz Rodrigo J, Buchlin J M, Van Beeck J, et al. Evaluation of the Antarctic surface wind climate from ERA reanalyses and RACMO2/ANT simulations based on automatic weather stations[J]. Climate Dynamics, 2013, 40(1): 353−376.
    [74]
    Wen Jiahong, Jezek K C, Monaghan A J, et al. Accumulation variability and mass budgets of the Lambert Glacier-Amery Ice Shelf system, East Antarctica, at high elevations[J]. Annals of Glaciology, 2006, 43: 351−360. doi: 10.3189/172756406781812249
    [75]
    Yu J, Liu H, Jezek K C, et al. Analysis of velocity field, mass balance, and basal melt of the Lambert Glacier-Amery Ice Shelf system by incorporating Radarsat SAR interferometry and ICESat laser altimetry measurements[J]. Journal of Geophysical Research: Solid Earth, 2010, 115: B11102. doi: 10.1029/2010JB007456
    [76]
    Rignot E. Changes in ice dynamics and mass balance of the Antarctic ice sheet[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 364(1844): 1637−1655. doi: 10.1098/rsta.2006.1793
    [77]
    陈红霞, 林丽娜, 史久新. 南极普里兹湾及其邻近海域水团研究[J]. 海洋学报, 2014, 36(7): 1−8.

    Chen Hongxia, Lin Lina, Shi Jiuxin. Study on water masses in Prydz Bay and its adjacent sea area[J]. Haiyang Xuebao, 2014, 36(7): 1−8.
    [78]
    蒲书箴, 胡筱敏, 董兆乾, 等. 普里兹湾附近绕极深层水和底层水及其运动特征[J]. 海洋学报, 2002, 24(3): 1−8.

    Pu Shuzhen, Hu Xiaomin, Dong Zhaoqian, et al. Features of Circumpolar Deep Water, Antarctic Bottom Water and their movement near the Prydz Bay[J]. Haiyang Xuebao, 2002, 24(3): 1−8.
    [79]
    Ohshima K I, Fukamachi Y, Williams G D, et al. Antarctic Bottom Water production by intense sea-ice formation in the Cape Darnley Polynya[J]. Nature Geoscience, 2013, 6(3): 235−240. doi: 10.1038/ngeo1738
    [80]
    Aoki S, Katsumata K, Hamaguchi M, et al. Freshening of Antarctic Bottom Water off Cape Darnley, East Antarctica[J]. Journal of Geophysical Research: Oceans, 2020, 125(8): e2020JC016374.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(4)

    Article views (443) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return