Citation: | Liang Kunming,Qiu Yun,He Yijun, et al. Seasonal variability and mechanism of marine heatwaves in the Bay of Bengal[J]. Haiyang Xuebao,2023, 45(6):13–24 doi: 10.12284/hyxb2023075 |
[1] |
胡石建, 李诗翰. 海洋热浪研究进展与展望[J]. 地球科学进展, 2022, 37(1): 51−64. doi: 10.11867/j.issn.1001-8166.2021.121
Hu Shijian, Li Shihan. Progress and prospect of marine heatwave study[J]. Advances in Earth Science, 2022, 37(1): 51−64. doi: 10.11867/j.issn.1001-8166.2021.121
|
[2] |
Scannell H A, Johnson G C, Thompson L, et al. Subsurface evolution and persistence of marine heatwaves in the Northeast Pacific[J]. Geophysical Research Letters, 2020, 47(23): e2020GL090548. doi: 10.1029/2020GL090548
|
[3] |
Benthuysen J A, Oliver E C J, Feng Ming, et al. Extreme marine warming across tropical Australia during Austral summer 2015−2016[J]. Journal of Geophysical Research: Oceans, 2018, 123(2): 1301−1326. doi: 10.1002/2017JC013326
|
[4] |
Holbrook N J, Scannell H A, Sen Gupta A, et al. A global assessment of marine heatwaves and their drivers[J]. Nature Communication, 2019, 10(1): 2624. doi: 10.1038/s41467-019-10206-z
|
[5] |
Von Schuckmann K, Cheng Lijing, Palmer M D, et al. Heat stored in the Earth system: where does the energy go?[J]. Earth System Science Data, 2020, 12(3): 2013−2041. doi: 10.5194/essd-12-2013-2020
|
[6] |
Cheng Lijing, Abraham J, Hausfather Z, et al. How fast are the oceans warming?: observational records of ocean heat content show that ocean warming is accelerating[J]. Science, 2019, 363(6423): 128−129. doi: 10.1126/science.aav7619
|
[7] |
Oliver E C J, Donat M G, Burrows M T, et al. Longer and more frequent marine heatwaves over the past century[J]. Nature Communications, 2018, 9(1): 1324. doi: 10.1038/s41467-018-03732-9
|
[8] |
Oliver E C J, Benthuysen J A, Darmaraki S, et al. Marine heatwaves[J]. Annual Review of Marine Science, 2021, 13: 313−342. doi: 10.1146/annurev-marine-032720-095144
|
[9] |
Holbrook N J, Sen Gupta A, Oliver E C J, et al. Keeping pace with marine heatwaves[J]. Nature Reviews Earth & Environment, 2020, 1(9): 482−493.
|
[10] |
Di Lorenzo E, Mantua N. Multi-year persistence of the 2014/15 North Pacific marine heatwave[J]. Nature Climate Change, 2016, 6(11): 1042−1047. doi: 10.1038/nclimate3082
|
[11] |
Rodrigues R R, Taschetto A S, Sen Gupta A, et al. Common cause for severe droughts in South America and marine heatwaves in the South Atlantic[J]. Nature Geoscience, 2019, 12(8): 620−626. doi: 10.1038/s41561-019-0393-8
|
[12] |
Zhang Ying, Du Yan, Feng Ming, et al. Long-lasting marine heatwaves instigated by ocean planetary waves in the tropical Indian Ocean during 2015−2016 and 2019−2020[J]. Geophysical Research Letters, 2021, 48(21): e2021GL095350. doi: 10.1029/2021GL095350
|
[13] |
Laufkötter C, Zscheischler J, Frölicher T L. High-impact marine heatwaves attributable to human-induced global warming[J]. Science, 2020, 369(6511): 1621−1625. doi: 10.1126/science.aba0690
|
[14] |
Jacox M G, Alexander M A, Bograd S J, et al. Thermal displacement by marine heatwaves[J]. Nature, 2020, 584(7819): 82−86. doi: 10.1038/s41586-020-2534-z
|
[15] |
Cavole L M, Demko A M, Diner R E, et al. Biological impacts of the 2013−2015 warm-water anomaly in the Northeast Pacific: winners, losers, and the future[J]. Oceanography, 2016, 29(2): 273−285.
|
[16] |
Hughes T P, Kerry J T, Álvarez-Noriega M, et al. Global warming and recurrent mass bleaching of corals[J]. Nature, 2017, 543(7645): 373−377. doi: 10.1038/nature21707
|
[17] |
Smale D A, Wernberg T, Oliver E C J, et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services[J]. Nature Climate Change, 2019, 9(4): 306−312. doi: 10.1038/s41558-019-0412-1
|
[18] |
Smith K E, Burrows M T, Hobday A J, et al. Socioeconomic impacts of marine heatwaves: global issues and opportunities[J]. Science, 2021, 374(6566): eabj3593. doi: 10.1126/science.abj3593
|
[19] |
Pershing A J, Alexander M A, Hernandez C M, et al. Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery[J]. Science, 2015, 350(6262): 809−812. doi: 10.1126/science.aac9819
|
[20] |
Mills K E, Pershing A J, Brown C J, et al. Fisheries management in a changing climate: lessons from the 2012 ocean heat wave in the Northwest Atlantic[J]. Oceanography, 2013, 26(2): 191−195.
|
[21] |
Dinesh Kumar P K, Paul Y S, Muraleedharan K R, et al. Comparison of long-term variability of sea surface temperature in the Arabian Sea and Bay of Bengal[J]. Regional Studies in Marine Science, 2016, 3: 67−75. doi: 10.1016/j.rsma.2015.05.004
|
[22] |
Gao Xin, Li Gen, Liu Jiawei, et al. The trend and interannual variability of marine heatwaves over the Bay of Bengal[J]. Atmosphere, 2022, 13(3): 469. doi: 10.3390/atmos13030469
|
[23] |
Saranya J S, Roxy M K, Dasgupta P, et al. Genesis and trends in marine heatwaves over the tropical indian ocean and their interaction with the indian summer monsoon[J]. Journal of Geophysical Research: Oceans, 2022, 127(2): e2021JC017427. doi: 10.1029/2021JC017427
|
[24] |
Rathore S, Goyal R, Jangir B, et al. Interactions between a marine heatwave and tropical cyclone Amphan in the Bay of Bengal in 2020[J]. Frontiers in Climate, 2022, 4: 861477. doi: 10.3389/fclim.2022.861477
|
[25] |
Hu Ruijin, Liu Qinyu, Meng Xiangfeng, et al. On the mechanism of the seasonal variability of SST in the tropical Indian Ocean[J]. Advances in Atmospheric Sciences, 2005, 22(3): 451−462. doi: 10.1007/BF02918758
|
[26] |
Huang Boyin, Liu Chunying, Banzon V, et al. Improvements of the daily optimum interpolation sea surface temperature (DOISST) version 2.1[J]. Journal of Climate, 2021, 34(8): 2923−2939. doi: 10.1175/JCLI-D-20-0166.1
|
[27] |
Knapp K R, Ansari S, Bain C L, et al. Globally gridded satellite observations for climate studies[J]. Bulletin of the American Meteorological Society, 2011, 92(7): 893−907. doi: 10.1175/2011BAMS3039.1
|
[28] |
Hersbach H, De Rosnay P, Bell B. Operational Global Reanalysis: Progress, Future Directions and Synergies with NWP[M]. Reading: ECMWF, 2018.
|
[29] |
Jean-Michel L, Eric G, Romain B-B, et al. The copernicus global 1/12° oceanic and sea ice GLORYS12 reanalysis[J]. Frontiers in Earth Science, 2021, 9: 698876. doi: 10.3389/feart.2021.698876
|
[30] |
Kara A B, Rochford P A, Hurlburt H E. An optimal definition for ocean mixed layer depth[J]. Journal of Geophysical Research: Oceans, 2000, 105(C7): 16803−16821. doi: 10.1029/2000JC900072
|
[31] |
Pujol M I, Faugère Y, Taburet G, et al. DUACS DT2014: the new multi-mission altimeter data set reprocessed over 20 years[J]. Ocean Science, 2016, 12(5): 1067−1090. doi: 10.5194/os-12-1067-2016
|
[32] |
Hobday A J, Alexander L V, Perkins S E, et al. A hierarchical approach to defining marine heatwaves[J]. Progress in Oceanography, 2016, 141: 227−238. doi: 10.1016/j.pocean.2015.12.014
|
[33] |
Pietri A, Colas F, Mogollon R, et al. Marine heatwaves in the Humboldt current system: from 5-day localized warming to year-long El Niños[J]. Scientific Reports, 2021, 11(1): 21172. doi: 10.1038/s41598-021-00340-4
|
[34] |
Yao Yulong, Wang Chunzai. Variations in summer marine heatwaves in the South China Sea[J]. Journal of Geophysical Research: Oceans, 2021, 126(10): e2021JC017792. doi: 10.1029/2021JC017792
|
[35] |
Oliver E C J, Burrows M T, Donat M G, et al. Projected marine heatwaves in the 21st century and the potential for ecological impact[J]. Frontiers in Marine Science, 2019, 6: 734. doi: 10.3389/fmars.2019.00734
|
[36] |
Sen Gupta A, Thomsen M, Benthuysen J A, et al. Drivers and impacts of the most extreme marine heatwave events[J]. Scientific Reports, 2020, 10(1): 19359. doi: 10.1038/s41598-020-75445-3
|
[37] |
Schaeffer A, Roughan M. Subsurface intensification of marine heatwaves off southeastern Australia: The role of stratification and local winds[J]. Geophysical Research Letters, 2017, 44(10): 5025−5033. doi: 10.1002/2017GL073714
|
[38] |
Rao R R, Girish Kumar M S, Ravichandran M, et al. Interannual variability of Kelvin wave propagation in the wave guides of the equatorial Indian Ocean, the coastal Bay of Bengal and the southeastern Arabian Sea during 1993−2006[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2010, 57(1): 1−13. doi: 10.1016/j.dsr.2009.10.008
|