Citation: | Liu Zhenxuan,Yan Quanshu,Liu Yanguang, et al. Mineral chemistry and genetic significance of clinopyroxenes in the basement basalts from the southern Kyushu-Palau Ridge[J]. Haiyang Xuebao,2023, 45(6):75–92 doi: 10.12284/hyxb2023071 |
[1] |
石学法, 鄢全树. 西太平洋典型边缘海盆的岩浆活动[J]. 地球科学进展, 2013, 28(7): 737−750.
Shi Xuefa, Yan Quanshu. Magmatism of typical marginal basins (or back-arc basins) in the West Pacific[J]. Advances in Earth Science, 2013, 28(7): 737−750.
|
[2] |
李春峰, 周多, 李刚, 等. 西太平洋地球动力学问题与未来大洋钻探目标[J]. 地球科学, 2021, 46(3): 759−769.
Li Chunfeng, Zhou Duo, Li Gang, et al. Geodynamic problems in the western pacific and future scientific drill targets[J]. Earth Science, 2021, 46(3): 759−769.
|
[3] |
Stern R J, Gerya T. Subduction initiation in nature and models: a review[J]. Tectonophysics, 2018, 746: 173−198. doi: 10.1016/j.tecto.2017.10.014
|
[4] |
Yan Quanshu, Shi Xuefa, Yuan Long, et al. Tectono-magmatic evolution of the Philippine Sea Plate: a review[J]. Geosystems and Geoenvironment, 2022, 1(2): 100018. doi: 10.1016/j.geogeo.2021.100018
|
[5] |
Yan Quanshu, Shi Xuefa. Geological comparative studies of Japan arc system and Kyushu-Palau arc[J]. Acta Oceanologica Sinica, 2011, 30(4): 107−121. doi: 10.1007/s13131-011-0134-3
|
[6] |
Ishizuka O, Taylor R N, Yuasa M, et al. Making and breaking an island arc: a new perspective from the Oligocene Kyushu‐Palau arc, Philippine Sea[J]. Geochemistry, Geophysics, Geosystems, 2011, 12(5): Q05005.
|
[7] |
Scott R B. Petrology and geochemistry of arc tholeiites on the Palau-Kyushu Ridge, Site 448, deep sea drilling project leg 59[J]. Initial Reports of the Deep Sea Drilling Project, 1980, 59: 681−692.
|
[8] |
Brandl P A, Hamada M, Arculus R J, et al. The arc arises: the links between volcanic output, arc evolution and melt composition[J]. Earth and Planetary Science Letters, 2017, 461: 73−84. doi: 10.1016/j.jpgl.2016.12.027
|
[9] |
Stern R J. Subduction initiation: spontaneous and induced[J]. Earth and Planetary Science Letters, 2004, 226(3/4): 275−292.
|
[10] |
丁巍伟, 李家彪. 九州−帕劳海脊南段的深部结构探测及对板块俯冲起始机制的可能启示[J]. 海洋地质与第四纪地质, 2019, 39(5): 98−103.
Ding Weiwei, Li Jiabiao. Seismic detection of deep structure for southern Kyueshu-Palau Ridge and its possible implications for subduction initiation[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 98−103.
|
[11] |
Yang H J, Frey F A, Clague D A, et al. Mineral chemistry of submarine lavas from Hilo Ridge, Hawaii: implications for magmatic processes within Hawaiian rift zones[J]. Contributions to Mineralogy and Petrology, 1999, 135(4): 355−372. doi: 10.1007/s004100050517
|
[12] |
Guo Feng, Nakamuru E, Fan Weiming, et al. Generation of Palaeocene adakitic andesites by magma mixing; Yanji Area, NE China[J]. Journal of Petrology, 2007, 48(4): 661−692. doi: 10.1093/petrology/egl077
|
[13] |
Li Xiaohui, Zeng Zhigang, Yang Huixin, et al. Integrated major and trace element study of clinopyroxene in basic, intermediate and acidic volcanic rocks from the middle Okinawa Trough: insights into petrogenesis and the influence of subduction component[J]. Lithos, 2020, 352-353: 105320. doi: 10.1016/j.lithos.2019.105320
|
[14] |
于丽芳, 赵文霞, 陈建林, 等. 拉萨地块中南部新生代超钾质岩中单斜辉石斑晶的环带成分研究[J]. 岩石学报, 2011, 27(12): 3666−3674.
Yu Lifang, Zhao Wenxia, Chen Jianlin, et al. Compositional zone investigation of clinopyroxene phenocryst in the Cenozoic ultra-potassic rocks from the middle-southern Lhasa block[J]. Acta Petrologica Sinica, 2011, 27(12): 3666−3674.
|
[15] |
Ginibre C, Wörner G, Kronz A. Crystal zoning as an archive for magma evolution[J]. Elements, 2007, 3(4): 261−266. doi: 10.2113/gselements.3.4.261
|
[16] |
Wei Xun, Xu Yigang, Luo Zhenyu, et al. Composition of the Tarim mantle plume: constraints from clinopyroxene antecrysts in the early Permian Xiaohaizi dykes, NW China[J]. Lithos, 2015, 230: 69−81. doi: 10.1016/j.lithos.2015.05.010
|
[17] |
谢元惠, 单伟, 于学峰, 等. 胶东白垩纪煌斑岩中单斜辉石再循环晶的识别及其地质意义[J]. 岩石学报, 2021, 37(7): 2203−2233. doi: 10.18654/1000-0569/2021.07.14
Xie Yuanhui, Shan Wei, Yu Xuefeng, et al. Identification of clinopyroxene antecrysts in Cretaceous lamprophyre dykes from the Jiaodong Peninsula and their geological significance[J]. Acta Petrologica Sinica, 2021, 37(7): 2203−2233. doi: 10.18654/1000-0569/2021.07.14
|
[18] |
Lallemand S. Philippine Sea Plate inception, evolution, and consumption with special emphasis on the early stages of Izu-Bonin-Mariana subduction[J]. Progress in Earth and Planetary Science, 2016, 3(1): 15. doi: 10.1186/s40645-016-0085-6
|
[19] |
Wu J, Suppe J, Lu Renqi, et al. Philippine Sea and East Asian plate tectonics since 52 Ma constrained by new subducted slab reconstruction methods[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(6): 4670−4741. doi: 10.1002/2016JB012923
|
[20] |
Hall R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations[J]. Journal of Asian Earth Sciences, 2002, 20(4): 353−431. doi: 10.1016/S1367-9120(01)00069-4
|
[21] |
Deschamps A, Lallemand S. The West Philippine Basin: an Eocene to early Oligocene back arc basin opened between two opposed subduction zones[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B12): 2322.
|
[22] |
Tang Yong, Li Mingbi, Li Jiabiao, et al. The geomorphological features and continuity of the Kyushu-Palau Ridge (KPR)[J]. Acta Oceanologica Sinica, 2011, 30(5): 114−124. doi: 10.1007/s13131-011-0136-1
|
[23] |
张洁, 李家彪, 丁巍伟. 九州−帕劳海脊地壳结构及其形成演化的研究综述[J]. 海洋科学进展, 2012, 30(4): 595−607.
Zhang Jie, Li Jiabiao, Ding Weiwei. Reviews of the study on crustal structure and evolution of the Kyushu-Palau Ridge[J]. Advances in Marine Science, 2012, 30(4): 595−607.
|
[24] |
Nishizawa A, Kaneda K, Oikawa M. Crust and uppermost mantle structure of the Kyushu-Palau Ridge, remnant arc on the Philippine Sea plate[J]. Earth, Planets and Space, 2016, 68(1): 30. doi: 10.1186/s40623-016-0407-3
|
[25] |
Niu Xiongwei, Tan Pingchuan, Ding Weiwei, et al. Oceanic crustal structure and tectonic origin of the southern Kyushu-Palau Ridge in the Philippine Sea[J]. Acta Oceanologica Sinica, 2022, 41(1): 39−49. doi: 10.1007/s13131-021-1978-9
|
[26] |
Wei Xiaodong, Ding Weiwei, Ruan Aiguo, et al. Crustal structure and variation along the southern part of the Kyushu-Palau Ridge[J]. Acta Oceanologica Sinica, 2022, 41(1): 50−57. doi: 10.1007/s13131-021-1979-8
|
[27] |
Ding Hanghang, Ding Weiwei, Zhao Yanghui, et al. Spatiotemporal distribution of seamount volume along the Kyushu-Palau Ridge: implications for rejuvenated volcanism[J]. Journal of Asian Earth Sciences, 2022, 240: 105391. doi: 10.1016/j.jseaes.2022.105391
|
[28] |
Hawkins J W, Castillo P R. Early history of the Izu-Bonin-Mariana arc system: evidence from Belau and the Palau Trench[J]. Island Arc, 1998, 7(3): 559−578. doi: 10.1111/j.1440-1738.1998.00210.x
|
[29] |
Arculus R J, Ishizuka O, Bogus K A, et al. A record of spontaneous subduction initiation in the Izu-Bonin-Mariana arc[J]. Nature Geoscience, 2015, 8(9): 728−733. doi: 10.1038/ngeo2515
|
[30] |
Arculus R, Ishizuka O, Bogus K A. Izu-Bonin-Mariana arc origins: continental crust formation at intraoceanic arc: foundations, inceptions, and early evolution[J]. International Ocean Discovery Program Scientific Prospectus, 2013, 351.
|
[31] |
Mizuno A. Granodiorite from the Minami-koho Seamount on the Kyushu-Palau Ridge, and its K-Ar age[J]. Bulletin of Geological Survey of Japan, 1977, 28(8): 507−511.
|
[32] |
Taylor B, Goodliffe A M. The West Philippine Basin and the initiation of subduction, revisited[J]. Geophysical Research Letters, 2004, 31(12): L12602.
|
[33] |
Okino K, Ohara Y, Fujiwara T, et al. Tectonics of the southern tip of the Parece Vela Basin, Philippine Sea Plate[J]. Tectonophysics, 2009, 466(3/4): 213−228.
|
[34] |
Fang Yinxia, Li Jiabiao, Li Mingbi, et al. The formation and tectonic evolution of Philippine Sea Plate and KPR[J]. Acta Oceanologica Sinica, 2011, 30(4): 75−88. doi: 10.1007/s13131-011-0135-2
|
[35] |
Morimoto N. Nomenclature of pyroxenes[J]. Mineralogical Journal, 1989, 14(5): 198−221. doi: 10.2465/minerj.14.198
|
[36] |
鄢全树, 石学法, 王昆山, 等. 南海新生代玄武岩中单斜辉石矿物化学及成因意义[J]. 岩石学报, 2007, 23(11): 2981−2989.
Yan Quanshu, Shi Xuefa, Wang Kunshan, et al. Mineral chemistry and its genetic significance of olivine in Cenozoic basalts from the South China Sea[J]. Acta Petrologica Sinica, 2007, 23(11): 2981−2989.
|
[37] |
Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313−345. doi: 10.1144/GSL.SP.1989.042.01.19
|
[38] |
Leterrier J, Maury R C, Thonon P, et al. Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series[J]. Earth and Planetary Science Letters, 1982, 59(1): 139−154. doi: 10.1016/0012-821X(82)90122-4
|
[39] |
邱家骧, 曾广策. 中国东部新生代玄武岩中低压单斜辉石的矿物化学及岩石学意义[J]. 岩石学报, 1987(4): 1−9.
Qiu Jiaxiang, Zeng Guangce. The main characteristics and petrological significance of low pressure clinopyroxenes in the Cenozoic basalts from eastern China[J]. Acta Petrologica Sinica, 1987(4): 1−9.
|
[40] |
Nisbet E G, Pearce J A. Clinopyroxene composition in mafic lavas from different tectonic settings[J]. Contributions to Mineralogy and Petrology, 1977, 63(2): 149−160. doi: 10.1007/BF00398776
|
[41] |
Le Bas M J. The role of aluminum in igneous clinopyroxenes with relation to their parentage[J]. American Journal of Science, 1962, 260(4): 267−288. doi: 10.2475/ajs.260.4.267
|
[42] |
Kushiro I. Si-Al relation in clinopyroxenes from igneous rocks[J]. American Journal of Science, 1960, 258(8): 548−554. doi: 10.2475/ajs.258.8.548
|
[43] |
Ubide T, Galé C, Arranz E, et al. Clinopyroxene and amphibole crystal populations in a lamprophyre sill from the Catalonian Coastal Ranges (NE Spain): a record of magma history and a window to mineral-melt partitioning[J]. Lithos, 2014, 184−187: 225−242. doi: 10.1016/j.lithos.2013.10.029
|
[44] |
黄小龙, 徐义刚, 杨启军, 等. 滇西莴中晚始新世高镁富钾火山岩中单斜辉石斑晶环带结构的成因: 岩浆补给−混合过程[J]. 高校地质学报, 2007, 13(2): 250−260.
Huang Xiaolong, Xu Yigang, Yang Qijun, et al. Genesis of compositional zoning of clinopyroxene phenocrysts in the Wozhong Late Eocene high-Mg ultrapotassic lavas, western Yunnan, China: magma replenishment-mixing process[J]. Geological Journal of China Universities, 2007, 13(2): 250−260.
|
[45] |
Debari S, Kay S M, Kay R W. Ultramafic xenoliths from Adagdak volcano, Adak, Aleutian Islands, Alaska: deformed igneous cumulates from the Moho of an island arc[J]. The Journal of Geology, 1987, 95(3): 329−341. doi: 10.1086/629133
|
[46] |
Samajpati E, Hickey-Vargas R. Early magmatic history of the IBM arc inferred from volcanic minerals and melt inclusions from early-late Oligocene DSDP Site 296: a mineral-melt partition approach[J]. Contributions to Mineralogy and Petrology, 2022, 177(3): 41. doi: 10.1007/s00410-022-01909-6
|
[47] |
Dobosi G, Fodor R V. Magma fractionation, replenishment, and mixing as inferred from green-core clinopyroxenes in Pliocene basanite, southern Slovakia[J]. Lithos, 1992, 28(2): 133−150. doi: 10.1016/0024-4937(92)90028-W
|
[48] |
葛振敏, 鄢全树, 赵仁杰, 等. 科科斯脊玄武岩斜长石矿物化学及地质意义[J]. 海洋学报, 2020, 42(7): 93−107.
Ge Zhenmin, Yan Quanshu, Zhao Renjie, et al. Mineral chemistry and geological significance of plagioclases hosted by basalts from the Cocos Ridge[J]. Haiyang Xuebao, 2020, 42(7): 93−107.
|
[49] |
Streck M J. Mineral textures and zoning as evidence for open system processes[J]. Reviews in Mineralogy and Geochemistry, 2008, 69(1): 595−622. doi: 10.2138/rmg.2008.69.15
|
[50] |
Wei Xun, Zhang Yan, Shi Xuefa, et al. Concurrent magma mixing and crystallization processes revealed by clinopyroxene macrocrysts from Lamont guyot lavas in NW Pacific[J]. Lithos, 2022, 428−429: 106833. doi: 10.1016/j.lithos.2022.106833
|
[51] |
Putirka K D, Mikaelian H, Ryerson F, et al. New clinopyroxene-liquid thermobarometers for mafic, evolved, and volatile-bearing lava compositions, with applications to lavas from Tibet and the Snake River Plain, Idaho[J]. American Mineralogist, 2003, 88(10): 1542−1554. doi: 10.2138/am-2003-1017
|
[52] |
Putirka K D. Thermometers and barometers for volcanic systems[J]. Reviews in Mineralogy and Geochemistry, 2008, 69(1): 61−120. doi: 10.2138/rmg.2008.69.3
|
[53] |
Neave D A, Putirka K D. A new clinopyroxene-liquid barometer, and implications for magma storage pressures under Icelandic rift zones[J]. American Mineralogist, 2017, 102(4): 777−794. doi: 10.2138/am-2017-5968
|
[54] |
Putirka K. Clinopyroxene + liquid equilibria to 100 kbar and 2450 K[J]. Contributions to Mineralogy and Petrology, 1999, 135(2/3): 151−163.
|
[55] |
Mollo S, Putirka K, Misiti V, et al. A new test for equilibrium based on clinopyroxene-melt pairs: clues on the solidification temperatures of Etnean alkaline melts at post-eruptive conditions[J]. Chemical Geology, 2013, 352: 92−100. doi: 10.1016/j.chemgeo.2013.05.026
|
[56] |
Ishii T. Pyroxene geothermometry of basalts and an andesite from the Palau-Kyushu and West Mariana Ridges, Deep Sea Drilling Project Leg 59[J]. Initial Reports of the Deep Sea Drilling Project, 1981, 59: 693−718.
|
[57] |
D’Antonio M, Savov I, Spadea P, et al. Petrogenesis of Eocene oceanic basalts from the West Philippine Basin and Oligocene arc volcanics from the Palau-Kyushu Ridge drilled at 20°N, 135°E (western Pacific Ocean)[J]. Ofioliti, 2006, 31(2): 157−171.
|
[58] |
Wass S Y. Multiple origins of clinopyroxenes in alkali basaltic rocks[J]. Lithos, 1979, 12(2): 115−132. doi: 10.1016/0024-4937(79)90043-4
|
[59] |
Soesoo A. A multivariate statistical analysis of clinopyroxene composition: empirical coordinates for the crystallisation PT-estimations[J]. GFF, 1997, 119(1): 55−60. doi: 10.1080/11035899709546454
|
[60] |
Jayasuriya K D, O’Neill H S C, Berry A J, et al. A Mössbauer study of the oxidation state of Fe in silicate melts[J]. American Mineralogist, 2004, 89(11/12): 1597−1609.
|
[61] |
王锦团, 熊小林, 陈伊翔, 等. 俯冲带氧逸度研究: 进展和展望[J]. 中国科学: 地球科学, 2020, 63(12): 1952−1968. doi: 10.1007/s11430-019-9662-2
Wang Jintuan, Xiong Xiaolin, Chen Yixiang, et al. Redox processes in subduction zones: progress and prospect[J]. Science China Earth Sciences, 2020, 63(12): 1952−1968. doi: 10.1007/s11430-019-9662-2
|
[62] |
Cameron M, Papike J J. Structural and chemical variations in pyroxenes[J]. American Mineralogist, 1981, 66(1/2): 1−50.
|
[63] |
Schweitzer E L, Papike J J, Bence A E. Statistical analysis of clinopyroxenes from deep-sea basalts[J]. American Mineralogist, 1979, 64(5/6): 501−513.
|
[64] |
Andersen D J, Lindsley D H, Davidson P M. QUILF: a pascal program to assess equilibria among Fe-Mg-Mn-Ti oxides, pyroxenes, olivine, and quartz[J]. Computers & Geosciences, 1993, 19(9): 1333−1350.
|
[65] |
Aoki K I. Clinopyroxenes from alkaline rocks of Japan[J]. American Mineralogist, 1964, 49(9/10): 1199−1223.
|
[66] |
Kuritani T, Yoshida T, Kimura J I, et al. Water content of primitive low-K tholeiitic basalt magma from Iwate Volcano, NE Japan arc: implications for differentiation mechanism of frontal-arc basalt magmas[J]. Mineralogy and Petrology, 2014, 108(1): 1−11. doi: 10.1007/s00710-013-0278-2
|
[67] |
Perinelli C, Mollo S, Gaeta M, et al. An improved clinopyroxene-based hygrometer for Etnean magmas and implications for eruption triggering mechanisms[J]. American Mineralogist, 2016, 101(12): 2774−2777. doi: 10.2138/am-2016-5916
|
[68] |
Armienti P, Perinelli C, Putirka K D. A new model to estimate deep-level magma ascent rates, with applications to Mt. Etna (Sicily, Italy)[J]. Journal of Petrology, 2013, 54(4): 795−813. doi: 10.1093/petrology/egs085
|
[69] |
Aparicio A. Relationship between clinopyroxene composition and the formation environment of volcanic host rocks[J]. The IUP Journal of Earth Sciences, 2010, 4(3): 34−44.
|