Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 45 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
Liu Zhenxuan,Yan Quanshu,Liu Yanguang, et al. Mineral chemistry and genetic significance of clinopyroxenes in the basement basalts from the southern Kyushu-Palau Ridge[J]. Haiyang Xuebao,2023, 45(6):75–92 doi: 10.12284/hyxb2023071
Citation: Liu Zhenxuan,Yan Quanshu,Liu Yanguang, et al. Mineral chemistry and genetic significance of clinopyroxenes in the basement basalts from the southern Kyushu-Palau Ridge[J]. Haiyang Xuebao,2023, 45(6):75–92 doi: 10.12284/hyxb2023071

Mineral chemistry and genetic significance of clinopyroxenes in the basement basalts from the southern Kyushu-Palau Ridge

doi: 10.12284/hyxb2023071
  • Received Date: 2022-10-26
  • Rev Recd Date: 2022-12-15
  • Available Online: 2023-06-15
  • Publish Date: 2023-06-30
  • The Kyushu-Palau ridge (KPR) is an important part of the proto-Izu-Bonin-Mariana arc. The mineralogical and petrological studies of the arc basement rocks can provide significant insights for understanding the petrogenesis and magmatism characteristics of the early stage of intra-oceanic island arc evolution. In this paper, we performed petrographic and detailed mineral geochemical analyses including in situ major-trace elements of clinopyroxene (Cpx) phenocrysts and microcrystals from the basement basalts from the southern KPR. The results show that clinopyroxenes are mainly augites and diopside, which generally have similar chemical components for the phenocrysts and microcrystals. These clinopyroxenes are depleted in light rare earth elements with weak Eu negative anomalies. Most of the Cpx macrocrysts display zoning structures, which can be classified into basic and oscillatory zoning. The MgO, FeO, Al2O3, TiO2 and Mg# contents show complex high-low variations from the pyroxene core to the rim, indicating multi-period magma mixing and replenishment events. The crystallization temperature and pressure of Cpx phenocrysts are 1 151−1210℃ and 1.3×108−4.2×108 Pa, respectively. In addition, the water content of parent magma obtained by the inversion calculated from Cpx components is 0.8%−2.3% (wet weight). Conclusively, we suggested that the parent magma of the southern KPR lavas that formed within a typical intra-oceanic island-arc setting is a sub-alkaline island-arc tholeiite basaltic melt with high temperature, medium pressure, and high oxygen fugacity. The magma chambers were shallow in depth and there existed multi-period replenishment and mixing of primitive magma.
  • loading
  • [1]
    石学法, 鄢全树. 西太平洋典型边缘海盆的岩浆活动[J]. 地球科学进展, 2013, 28(7): 737−750.

    Shi Xuefa, Yan Quanshu. Magmatism of typical marginal basins (or back-arc basins) in the West Pacific[J]. Advances in Earth Science, 2013, 28(7): 737−750.
    [2]
    李春峰, 周多, 李刚, 等. 西太平洋地球动力学问题与未来大洋钻探目标[J]. 地球科学, 2021, 46(3): 759−769.

    Li Chunfeng, Zhou Duo, Li Gang, et al. Geodynamic problems in the western pacific and future scientific drill targets[J]. Earth Science, 2021, 46(3): 759−769.
    [3]
    Stern R J, Gerya T. Subduction initiation in nature and models: a review[J]. Tectonophysics, 2018, 746: 173−198. doi: 10.1016/j.tecto.2017.10.014
    [4]
    Yan Quanshu, Shi Xuefa, Yuan Long, et al. Tectono-magmatic evolution of the Philippine Sea Plate: a review[J]. Geosystems and Geoenvironment, 2022, 1(2): 100018. doi: 10.1016/j.geogeo.2021.100018
    [5]
    Yan Quanshu, Shi Xuefa. Geological comparative studies of Japan arc system and Kyushu-Palau arc[J]. Acta Oceanologica Sinica, 2011, 30(4): 107−121. doi: 10.1007/s13131-011-0134-3
    [6]
    Ishizuka O, Taylor R N, Yuasa M, et al. Making and breaking an island arc: a new perspective from the Oligocene Kyushu‐Palau arc, Philippine Sea[J]. Geochemistry, Geophysics, Geosystems, 2011, 12(5): Q05005.
    [7]
    Scott R B. Petrology and geochemistry of arc tholeiites on the Palau-Kyushu Ridge, Site 448, deep sea drilling project leg 59[J]. Initial Reports of the Deep Sea Drilling Project, 1980, 59: 681−692.
    [8]
    Brandl P A, Hamada M, Arculus R J, et al. The arc arises: the links between volcanic output, arc evolution and melt composition[J]. Earth and Planetary Science Letters, 2017, 461: 73−84. doi: 10.1016/j.jpgl.2016.12.027
    [9]
    Stern R J. Subduction initiation: spontaneous and induced[J]. Earth and Planetary Science Letters, 2004, 226(3/4): 275−292.
    [10]
    丁巍伟, 李家彪. 九州−帕劳海脊南段的深部结构探测及对板块俯冲起始机制的可能启示[J]. 海洋地质与第四纪地质, 2019, 39(5): 98−103.

    Ding Weiwei, Li Jiabiao. Seismic detection of deep structure for southern Kyueshu-Palau Ridge and its possible implications for subduction initiation[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 98−103.
    [11]
    Yang H J, Frey F A, Clague D A, et al. Mineral chemistry of submarine lavas from Hilo Ridge, Hawaii: implications for magmatic processes within Hawaiian rift zones[J]. Contributions to Mineralogy and Petrology, 1999, 135(4): 355−372. doi: 10.1007/s004100050517
    [12]
    Guo Feng, Nakamuru E, Fan Weiming, et al. Generation of Palaeocene adakitic andesites by magma mixing; Yanji Area, NE China[J]. Journal of Petrology, 2007, 48(4): 661−692. doi: 10.1093/petrology/egl077
    [13]
    Li Xiaohui, Zeng Zhigang, Yang Huixin, et al. Integrated major and trace element study of clinopyroxene in basic, intermediate and acidic volcanic rocks from the middle Okinawa Trough: insights into petrogenesis and the influence of subduction component[J]. Lithos, 2020, 352-353: 105320. doi: 10.1016/j.lithos.2019.105320
    [14]
    于丽芳, 赵文霞, 陈建林, 等. 拉萨地块中南部新生代超钾质岩中单斜辉石斑晶的环带成分研究[J]. 岩石学报, 2011, 27(12): 3666−3674.

    Yu Lifang, Zhao Wenxia, Chen Jianlin, et al. Compositional zone investigation of clinopyroxene phenocryst in the Cenozoic ultra-potassic rocks from the middle-southern Lhasa block[J]. Acta Petrologica Sinica, 2011, 27(12): 3666−3674.
    [15]
    Ginibre C, Wörner G, Kronz A. Crystal zoning as an archive for magma evolution[J]. Elements, 2007, 3(4): 261−266. doi: 10.2113/gselements.3.4.261
    [16]
    Wei Xun, Xu Yigang, Luo Zhenyu, et al. Composition of the Tarim mantle plume: constraints from clinopyroxene antecrysts in the early Permian Xiaohaizi dykes, NW China[J]. Lithos, 2015, 230: 69−81. doi: 10.1016/j.lithos.2015.05.010
    [17]
    谢元惠, 单伟, 于学峰, 等. 胶东白垩纪煌斑岩中单斜辉石再循环晶的识别及其地质意义[J]. 岩石学报, 2021, 37(7): 2203−2233. doi: 10.18654/1000-0569/2021.07.14

    Xie Yuanhui, Shan Wei, Yu Xuefeng, et al. Identification of clinopyroxene antecrysts in Cretaceous lamprophyre dykes from the Jiaodong Peninsula and their geological significance[J]. Acta Petrologica Sinica, 2021, 37(7): 2203−2233. doi: 10.18654/1000-0569/2021.07.14
    [18]
    Lallemand S. Philippine Sea Plate inception, evolution, and consumption with special emphasis on the early stages of Izu-Bonin-Mariana subduction[J]. Progress in Earth and Planetary Science, 2016, 3(1): 15. doi: 10.1186/s40645-016-0085-6
    [19]
    Wu J, Suppe J, Lu Renqi, et al. Philippine Sea and East Asian plate tectonics since 52 Ma constrained by new subducted slab reconstruction methods[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(6): 4670−4741. doi: 10.1002/2016JB012923
    [20]
    Hall R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations[J]. Journal of Asian Earth Sciences, 2002, 20(4): 353−431. doi: 10.1016/S1367-9120(01)00069-4
    [21]
    Deschamps A, Lallemand S. The West Philippine Basin: an Eocene to early Oligocene back arc basin opened between two opposed subduction zones[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B12): 2322.
    [22]
    Tang Yong, Li Mingbi, Li Jiabiao, et al. The geomorphological features and continuity of the Kyushu-Palau Ridge (KPR)[J]. Acta Oceanologica Sinica, 2011, 30(5): 114−124. doi: 10.1007/s13131-011-0136-1
    [23]
    张洁, 李家彪, 丁巍伟. 九州−帕劳海脊地壳结构及其形成演化的研究综述[J]. 海洋科学进展, 2012, 30(4): 595−607.

    Zhang Jie, Li Jiabiao, Ding Weiwei. Reviews of the study on crustal structure and evolution of the Kyushu-Palau Ridge[J]. Advances in Marine Science, 2012, 30(4): 595−607.
    [24]
    Nishizawa A, Kaneda K, Oikawa M. Crust and uppermost mantle structure of the Kyushu-Palau Ridge, remnant arc on the Philippine Sea plate[J]. Earth, Planets and Space, 2016, 68(1): 30. doi: 10.1186/s40623-016-0407-3
    [25]
    Niu Xiongwei, Tan Pingchuan, Ding Weiwei, et al. Oceanic crustal structure and tectonic origin of the southern Kyushu-Palau Ridge in the Philippine Sea[J]. Acta Oceanologica Sinica, 2022, 41(1): 39−49. doi: 10.1007/s13131-021-1978-9
    [26]
    Wei Xiaodong, Ding Weiwei, Ruan Aiguo, et al. Crustal structure and variation along the southern part of the Kyushu-Palau Ridge[J]. Acta Oceanologica Sinica, 2022, 41(1): 50−57. doi: 10.1007/s13131-021-1979-8
    [27]
    Ding Hanghang, Ding Weiwei, Zhao Yanghui, et al. Spatiotemporal distribution of seamount volume along the Kyushu-Palau Ridge: implications for rejuvenated volcanism[J]. Journal of Asian Earth Sciences, 2022, 240: 105391. doi: 10.1016/j.jseaes.2022.105391
    [28]
    Hawkins J W, Castillo P R. Early history of the Izu-Bonin-Mariana arc system: evidence from Belau and the Palau Trench[J]. Island Arc, 1998, 7(3): 559−578. doi: 10.1111/j.1440-1738.1998.00210.x
    [29]
    Arculus R J, Ishizuka O, Bogus K A, et al. A record of spontaneous subduction initiation in the Izu-Bonin-Mariana arc[J]. Nature Geoscience, 2015, 8(9): 728−733. doi: 10.1038/ngeo2515
    [30]
    Arculus R, Ishizuka O, Bogus K A. Izu-Bonin-Mariana arc origins: continental crust formation at intraoceanic arc: foundations, inceptions, and early evolution[J]. International Ocean Discovery Program Scientific Prospectus, 2013, 351.
    [31]
    Mizuno A. Granodiorite from the Minami-koho Seamount on the Kyushu-Palau Ridge, and its K-Ar age[J]. Bulletin of Geological Survey of Japan, 1977, 28(8): 507−511.
    [32]
    Taylor B, Goodliffe A M. The West Philippine Basin and the initiation of subduction, revisited[J]. Geophysical Research Letters, 2004, 31(12): L12602.
    [33]
    Okino K, Ohara Y, Fujiwara T, et al. Tectonics of the southern tip of the Parece Vela Basin, Philippine Sea Plate[J]. Tectonophysics, 2009, 466(3/4): 213−228.
    [34]
    Fang Yinxia, Li Jiabiao, Li Mingbi, et al. The formation and tectonic evolution of Philippine Sea Plate and KPR[J]. Acta Oceanologica Sinica, 2011, 30(4): 75−88. doi: 10.1007/s13131-011-0135-2
    [35]
    Morimoto N. Nomenclature of pyroxenes[J]. Mineralogical Journal, 1989, 14(5): 198−221. doi: 10.2465/minerj.14.198
    [36]
    鄢全树, 石学法, 王昆山, 等. 南海新生代玄武岩中单斜辉石矿物化学及成因意义[J]. 岩石学报, 2007, 23(11): 2981−2989.

    Yan Quanshu, Shi Xuefa, Wang Kunshan, et al. Mineral chemistry and its genetic significance of olivine in Cenozoic basalts from the South China Sea[J]. Acta Petrologica Sinica, 2007, 23(11): 2981−2989.
    [37]
    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313−345. doi: 10.1144/GSL.SP.1989.042.01.19
    [38]
    Leterrier J, Maury R C, Thonon P, et al. Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series[J]. Earth and Planetary Science Letters, 1982, 59(1): 139−154. doi: 10.1016/0012-821X(82)90122-4
    [39]
    邱家骧, 曾广策. 中国东部新生代玄武岩中低压单斜辉石的矿物化学及岩石学意义[J]. 岩石学报, 1987(4): 1−9.

    Qiu Jiaxiang, Zeng Guangce. The main characteristics and petrological significance of low pressure clinopyroxenes in the Cenozoic basalts from eastern China[J]. Acta Petrologica Sinica, 1987(4): 1−9.
    [40]
    Nisbet E G, Pearce J A. Clinopyroxene composition in mafic lavas from different tectonic settings[J]. Contributions to Mineralogy and Petrology, 1977, 63(2): 149−160. doi: 10.1007/BF00398776
    [41]
    Le Bas M J. The role of aluminum in igneous clinopyroxenes with relation to their parentage[J]. American Journal of Science, 1962, 260(4): 267−288. doi: 10.2475/ajs.260.4.267
    [42]
    Kushiro I. Si-Al relation in clinopyroxenes from igneous rocks[J]. American Journal of Science, 1960, 258(8): 548−554. doi: 10.2475/ajs.258.8.548
    [43]
    Ubide T, Galé C, Arranz E, et al. Clinopyroxene and amphibole crystal populations in a lamprophyre sill from the Catalonian Coastal Ranges (NE Spain): a record of magma history and a window to mineral-melt partitioning[J]. Lithos, 2014, 184−187: 225−242. doi: 10.1016/j.lithos.2013.10.029
    [44]
    黄小龙, 徐义刚, 杨启军, 等. 滇西莴中晚始新世高镁富钾火山岩中单斜辉石斑晶环带结构的成因: 岩浆补给−混合过程[J]. 高校地质学报, 2007, 13(2): 250−260.

    Huang Xiaolong, Xu Yigang, Yang Qijun, et al. Genesis of compositional zoning of clinopyroxene phenocrysts in the Wozhong Late Eocene high-Mg ultrapotassic lavas, western Yunnan, China: magma replenishment-mixing process[J]. Geological Journal of China Universities, 2007, 13(2): 250−260.
    [45]
    Debari S, Kay S M, Kay R W. Ultramafic xenoliths from Adagdak volcano, Adak, Aleutian Islands, Alaska: deformed igneous cumulates from the Moho of an island arc[J]. The Journal of Geology, 1987, 95(3): 329−341. doi: 10.1086/629133
    [46]
    Samajpati E, Hickey-Vargas R. Early magmatic history of the IBM arc inferred from volcanic minerals and melt inclusions from early-late Oligocene DSDP Site 296: a mineral-melt partition approach[J]. Contributions to Mineralogy and Petrology, 2022, 177(3): 41. doi: 10.1007/s00410-022-01909-6
    [47]
    Dobosi G, Fodor R V. Magma fractionation, replenishment, and mixing as inferred from green-core clinopyroxenes in Pliocene basanite, southern Slovakia[J]. Lithos, 1992, 28(2): 133−150. doi: 10.1016/0024-4937(92)90028-W
    [48]
    葛振敏, 鄢全树, 赵仁杰, 等. 科科斯脊玄武岩斜长石矿物化学及地质意义[J]. 海洋学报, 2020, 42(7): 93−107.

    Ge Zhenmin, Yan Quanshu, Zhao Renjie, et al. Mineral chemistry and geological significance of plagioclases hosted by basalts from the Cocos Ridge[J]. Haiyang Xuebao, 2020, 42(7): 93−107.
    [49]
    Streck M J. Mineral textures and zoning as evidence for open system processes[J]. Reviews in Mineralogy and Geochemistry, 2008, 69(1): 595−622. doi: 10.2138/rmg.2008.69.15
    [50]
    Wei Xun, Zhang Yan, Shi Xuefa, et al. Concurrent magma mixing and crystallization processes revealed by clinopyroxene macrocrysts from Lamont guyot lavas in NW Pacific[J]. Lithos, 2022, 428−429: 106833. doi: 10.1016/j.lithos.2022.106833
    [51]
    Putirka K D, Mikaelian H, Ryerson F, et al. New clinopyroxene-liquid thermobarometers for mafic, evolved, and volatile-bearing lava compositions, with applications to lavas from Tibet and the Snake River Plain, Idaho[J]. American Mineralogist, 2003, 88(10): 1542−1554. doi: 10.2138/am-2003-1017
    [52]
    Putirka K D. Thermometers and barometers for volcanic systems[J]. Reviews in Mineralogy and Geochemistry, 2008, 69(1): 61−120. doi: 10.2138/rmg.2008.69.3
    [53]
    Neave D A, Putirka K D. A new clinopyroxene-liquid barometer, and implications for magma storage pressures under Icelandic rift zones[J]. American Mineralogist, 2017, 102(4): 777−794. doi: 10.2138/am-2017-5968
    [54]
    Putirka K. Clinopyroxene + liquid equilibria to 100 kbar and 2450 K[J]. Contributions to Mineralogy and Petrology, 1999, 135(2/3): 151−163.
    [55]
    Mollo S, Putirka K, Misiti V, et al. A new test for equilibrium based on clinopyroxene-melt pairs: clues on the solidification temperatures of Etnean alkaline melts at post-eruptive conditions[J]. Chemical Geology, 2013, 352: 92−100. doi: 10.1016/j.chemgeo.2013.05.026
    [56]
    Ishii T. Pyroxene geothermometry of basalts and an andesite from the Palau-Kyushu and West Mariana Ridges, Deep Sea Drilling Project Leg 59[J]. Initial Reports of the Deep Sea Drilling Project, 1981, 59: 693−718.
    [57]
    D’Antonio M, Savov I, Spadea P, et al. Petrogenesis of Eocene oceanic basalts from the West Philippine Basin and Oligocene arc volcanics from the Palau-Kyushu Ridge drilled at 20°N, 135°E (western Pacific Ocean)[J]. Ofioliti, 2006, 31(2): 157−171.
    [58]
    Wass S Y. Multiple origins of clinopyroxenes in alkali basaltic rocks[J]. Lithos, 1979, 12(2): 115−132. doi: 10.1016/0024-4937(79)90043-4
    [59]
    Soesoo A. A multivariate statistical analysis of clinopyroxene composition: empirical coordinates for the crystallisation PT-estimations[J]. GFF, 1997, 119(1): 55−60. doi: 10.1080/11035899709546454
    [60]
    Jayasuriya K D, O’Neill H S C, Berry A J, et al. A Mössbauer study of the oxidation state of Fe in silicate melts[J]. American Mineralogist, 2004, 89(11/12): 1597−1609.
    [61]
    王锦团, 熊小林, 陈伊翔, 等. 俯冲带氧逸度研究: 进展和展望[J]. 中国科学: 地球科学, 2020, 63(12): 1952−1968. doi: 10.1007/s11430-019-9662-2

    Wang Jintuan, Xiong Xiaolin, Chen Yixiang, et al. Redox processes in subduction zones: progress and prospect[J]. Science China Earth Sciences, 2020, 63(12): 1952−1968. doi: 10.1007/s11430-019-9662-2
    [62]
    Cameron M, Papike J J. Structural and chemical variations in pyroxenes[J]. American Mineralogist, 1981, 66(1/2): 1−50.
    [63]
    Schweitzer E L, Papike J J, Bence A E. Statistical analysis of clinopyroxenes from deep-sea basalts[J]. American Mineralogist, 1979, 64(5/6): 501−513.
    [64]
    Andersen D J, Lindsley D H, Davidson P M. QUILF: a pascal program to assess equilibria among Fe-Mg-Mn-Ti oxides, pyroxenes, olivine, and quartz[J]. Computers & Geosciences, 1993, 19(9): 1333−1350.
    [65]
    Aoki K I. Clinopyroxenes from alkaline rocks of Japan[J]. American Mineralogist, 1964, 49(9/10): 1199−1223.
    [66]
    Kuritani T, Yoshida T, Kimura J I, et al. Water content of primitive low-K tholeiitic basalt magma from Iwate Volcano, NE Japan arc: implications for differentiation mechanism of frontal-arc basalt magmas[J]. Mineralogy and Petrology, 2014, 108(1): 1−11. doi: 10.1007/s00710-013-0278-2
    [67]
    Perinelli C, Mollo S, Gaeta M, et al. An improved clinopyroxene-based hygrometer for Etnean magmas and implications for eruption triggering mechanisms[J]. American Mineralogist, 2016, 101(12): 2774−2777. doi: 10.2138/am-2016-5916
    [68]
    Armienti P, Perinelli C, Putirka K D. A new model to estimate deep-level magma ascent rates, with applications to Mt. Etna (Sicily, Italy)[J]. Journal of Petrology, 2013, 54(4): 795−813. doi: 10.1093/petrology/egs085
    [69]
    Aparicio A. Relationship between clinopyroxene composition and the formation environment of volcanic host rocks[J]. The IUP Journal of Earth Sciences, 2010, 4(3): 34−44.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article views (380) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return